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Abstract

For the modeling of the wind speed, we propose a family of distributions in polynomial form
generating the Lindley distribution. We call this distribution Lindley-Polynomial distribution. The
estimation of parameters using the maximum product spacing estimation method. A real data set
has been considered to illustrate the practical utility of the paper.

Keywords: Lindley distribution; Lindley-Polynomial distribution; Maximum Product Spacing
estimation method; Quantiles
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1. Introduction

In 1958, Lindley (1958) suggested a one parameter distribution to illustrate the difference between
fiducial distribution and posterior distribution. The Lindley distribution has been used for modeling
lifetime data and studying some stress-strength problems and has been the subject of studies by
several authors. For example, we mention the works of Sankaran (1970) introduced the Discrete
Poisson-Lindley Distribution and Ghitany et al. (2008) presents a treatment of the mathemati-
cal properties for the Lindley distribution. Ghitany et al. (2012) investigated the Marshall-Olkin
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extended Lindley distribution and Rodrigues et al. (2015) study the beta exponentiated Lindley
distribution. In this work, we propose a family of distributions in polynomial form generating
the Lindley distribution. We call this distribution Lindley-Polynomial distribution. The estimation
of parameters using the maximum product spacing estimation method. The maximum product of
spacings (MPS) method for estimating parameters in continuous univariate distributions was pro-
posed by Cheng and Amin (1983) and independently by Ranneby (1984). The MPS method pro-
duces consistent and asymptotically efficient estimators. These estimators are consistent see Ran-
neby (1984). In their work Heathcote et al. (2002) proposes a method that uses empirical quantiles.
Knowledge of extreme wind speed distributions is essential for the design of wind turbines and
structures. Statistical parameters to express wind distribution speeds are very useful, and consider-
able work has been carried on in recent years. Many authors have shown the fit of wind speed to the
Weibull distribution step by step. However, these studies are performed through priori acceptance.
Probability density function of wind speed is not always statistically accepted as Weibull pdf.

Celik (2003) proposes an empirical study and Whalen et al. (2004) proposes the method of self-
determined probability-weighted moments. Carta and Ramírez (2007) present the analysis of two-
component mixture Weibull statistics for estimation of wind speed distributions and Ghorbanzadeh
et al. (2016) proposes a change-point model.

The paper examines the applicability of probability distributions commonly used to model
wind speeds to data representing the average daily wind speed (km/h) at the Orly air-
port (Paris, France), from January 1, 2006 to December 31, 2015 (data is available at:
https://www.wunderground.com/history/airport/).

2. Construction of the Lindley-Polynomial distribution

In this section we consider g a probability density function (pdf) on (0,∞) andm a positive integer.
We assume that the moments of order k of g exists:

µk =

∫ ∞
0

xk g(x) dx <∞, ∀k ∈ {0, 1, . . . ,m}.

In this paper we consider the densities family

fm(x) = Cm

( m∑
k=0

xk
)
g(x) l1(0,∞)(x), (1)

where l1 is the indicator function and Cm =
(
1 + µ1 + . . .+ µm

)−1.

For generating a random variable from density (1), we have the following algorithm.

Proposition 2.1.

Consider X and N two random variables such that:

(1) N is discrete values in the set {0, 1, . . . ,m} with probability mass function (pmf) : P
(
N =

2
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k
)
= pk where pk is defined by

pk =
µk

1 + µ1 + . . .+ µm
= µkCm, (2)

(2) given as N , X has the pdf

fX(x|N = k) =
1

µk
xkg(x) l1(0,∞)(x). (3)

Then, the random variable X has the pdf defined in (1).

Proof:

The unconditional density of the random variable X is given by

fm(x) =
m∑
k=0

pk fX(x|N = k) =

( m∑
k=0

pk
µk

xk
)
g(x) l1(0,∞)(x).

Using (2) we get the result. �

In the following, we will consider a special case for the pdf g (g(x) = θ e−θx), which corresponds
to the exponential distribution with θ > 0 parameter. In this case we have the following family of
distributions (Lindley-Polynomial distribution):

fm(x, θ) = Cm(θ)

( m∑
k=0

xk
)
e−θx l1(0,∞)(x), (4)

where Cm(θ) is defined by

Cm(θ) =
θm+1

m∑
k=0

k! θm−k
. (5)

For generating a random variable from density (4), we have the following algorithm.

Proposition 2.2.

Consider X and N two random variables such that:

(1) N is discrete values in the set {0, 1, . . . ,m} with probability mass function (pmf)

pk =
k! θm−k

m∑
k=0

k!θm−k
=

k!

θk+1
Cm(θ), (6)

(2) given as N , X has the gamma distribution with parameters k + 1 and θ (γ(k + 1, θ))

fX(x|N = k) =
θk+1

k!
xke−θx l1(0,∞)(x). (7)

Then, the random variable X has the pdf defined in (4).
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Proof:

We have µk =
∫ ∞
0

xk e−θx dx =
k!

θk+1
, and using Proposition (2.1), we get the result. �

For m = 1, we get the pdf f1(x, θ) = θ2

1+θ
(1 + x) e−θx l1(0,∞)(x), which is the Lindley distribution.

The following figures shows the pdf of Lindley-Polynomial distribution defined in (4) as a function
of variation of θ and m.

Figure 1. The pdf of Lindley-Polynomial distribution defined in (4) with θ = 0.4

Figure 2. The pdf of Lindley-Polynomial distribution defined in (4) with θ = 1.8
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For the statistical properties of the Lindley-Polynomial distribution, we have the following propo-
sition.

Proposition 2.3.

(1) The cumulative distribution function (cdf) is defined by

Fm(x, θ) = 1− Cm(θ)
m∑
k=0

k∑
j=0

k!

j!
θj−k−1 xj e−θx. (8)

(2) The characteristic function is defined by

ϕX(t) = E[eitX ] = Cm(θ)
m∑
k=0

k!

(θ − it)k+1
. (9)

(3) The rth moment is defined by

E[Xr] =
1

θr

m∑
k=0

(k + r)! θm−k

m∑
k=0

k! θm−k
. (10)

(4) The hazard rate function (failure rate function) is defined by

h(x) =
fm(x, θ)

1− Fm(x, θ)
=

m∑
k=0

xk

m∑
k=0

k∑
j=0

k!
j!
θj−k−1 xj

. (11)

3. Estimation of Parameters

In this section we use the MPS estimates techniques to estimate the parameters of the distribution.
The method is based on maximization of the geometric mean of probability spacings in the data
where the spacings are defined as the differences between the values of the cumulative distribution
function at sequential data indices. The MPS method, originally suggested by Cheng and Amin
(1983), this method was also independently developed by Ranneby (1984) as approximation to the
Kullback-Leibler measure of information. In their work Heathcote et al. (2002) proposes a method
that uses empirical quantiles.

Let X1, . . . , Xn be a random sample from the Lindley-Polynomial distribution (4). We suppose
that a random sample of size n has been allocated in k classes: C1, . . . , Ck with observed frequency
n1, . . . , nk. The probability of class Ci is

pi(m, θ) =

∫
Ci

fm(x, θ) dx. (12)

5
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The likelihood function of a multinomial distribution defined on the classes C1, . . . , Ck, that is,

Lm(θ) =
k∏
i=1

(
pi(m, θ)

)ni

, (13)

and the log-likelihood function is given as

`m(θ) = log
(
Lm(θ)

)
=

k∑
i=1

ni log
(
pi(m, θ)

)
. (14)

The estimator of θ is defined by

θ̂(m) = argsup
θ>0

`m(θ), (15)

and the estimator of m is defined by

m̂ = argmax
m≥1

`m
(
θ̂(m)

)
. (16)

In this work, we deliberately consider the classes

C1 = (0, q1), C2 = (q1, q2), . . . , Ck = (qk−1,∞), (17)

with the corresponding probabilities
p1(m, θ) = Fm(q1, θ),

pi(m, θ) = Fm(qi, θ)− Fm(qi−1, θ), i = 2, . . . , k − 1,

pk(m, θ) = 1− Fm(qk−1, θ),

(18)

where qi denotes the ith quantile: Fm(qi, θ) = i/100.

4. Application

We apply the model used in this work to the data representing the average daily wind speed (km/h)
at the Orly airport (Paris, France), from January 1, 2006 to December 31, 2015.

We consider two types of analysis. The first analysis is to do a monthly study of the data, studying
the twelve months, the ten years, separately (the January data gather the data for the ten months
January 2006, ..., January 2015 and the same for the other months) and the two analysis consists
in doing a seasonal study considering the four seasons.

In this section, we consider the following nine classes:

C1 = (0, q10), C2 = (q10, q20), C3 = (q20, q35), C4 = (q35, q50), C5 = (q50, q65),

C6 = (q65, q75), C7 = (q75, q85), C8 = (q85, q90), C9 = (q90,∞).
(19)

4.1. Results for monthly analysis

The following table represents the results of estimation of the parameters obtained by the monthly
analysis of the data.

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 1, Art. 44

https://digitalcommons.pvamu.edu/aam/vol16/iss1/44









AAM: Intern. J., Vol. 16, Issue 1 (June 2021) 785

(a) The log Likelihood function for autumn data. (b) The pdf and histogram for autumn data.

Figure 7. Seasonal analysis results graph for autumn data

(a) The log Likelihood function for winter data. (b) The pdf and histogram for winter data.

Figure 8. Seasonal analysis results graph for winter data
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