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Abstract

The classical Analysis of Means (ANOM) is a statistical inferencing procedure and visualization
tool to analyze means from experiments with fixed effects. It can serve as an alternative to the
Analysis of Variance (ANOVA) procedure that has distinct advantages when determining which
effects contributed to an overall test’s significant result. ANOM has been extended to handle nu-
merous situations including robust procedures involving ranks. More recent advancements of this
procedure allow one to handle both random, and mixed effect models. In this work, we discuss
the recent developments on ANOM methods that are useful in practice, provide examples that
illustrate their effectiveness, and discuss logistical issues with post hoc testing.

Keywords: Analysis of Means; Analysis of variance; Fixed Effect; Multiple Comparison; Ran-
dom Effect
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76 K.P. Jayalath and J. Turner

1. Introduction

The analysis of means (ANOM) is a graphical testing procedure similar to Shewhart control charts
that can be used for multiple group comparisons. The ANOM has several advantages when com-
pared to traditional analysis of variance (ANOVA). At times, introducing ANOVA to beginners and
practitioners with lack of statistical knowledge is challenging. The notion of splitting variability
present in data into possible sources to compare and contrast means seems conceptually awkward
when advancing from one and two sample t-tests. Additionally, making inferences on treatment
means using ANOVA is a two-stage process. First, an overall F-test is conducted to see whether
there is at least one treatment mean significantly different from the rest. If concluded to be true,
then a post-hoc test is applied to identify which specific means caused the observed significance.

An unfortunate consequence of post hoc testing in ANOVA is that they do not always correspond to
the decision of the overall F-test. For example, the overall F-test might be rejected, but all pairwise
comparisons from a Tukey or Bonferroni procedure yield no significant differences. Alternatively,
ANOM is a simple graphical testing procedure that simultaneoulsy compares each individual mean
to their overall mean. The visual comparisons are derived so that the family wise error rate is
controlled and correspond directly to the overall ANOM testing procedure.

Due to its integration of statistical inference within a visual frame work, the ANOM procedure
has become increasingly popular among practitioners and data scientists. For instance, ANOM
can easily be used as a pretest to test the randomness of sampled data by plotting systematic
group means at early stages in survey sampling problems. ANOM has also been applied in many
areas of research including medicine, health care, quality management, and environmental sci-
ences (Mohammed and Holder (2012); Prokeš et al. (2017); Delvoye et al. (2009); Homa (2007);
Murthy et al. (2018)). In terms of software accessibility, it has been implemented in many statisti-
cal packages including SAS (PROC ANOM), MINITAB, JMP, and R ‘ANOM’ package (Pallmann
and Hothorn (2016)).

The ANOM procedure was first introduced by Ott (1967) and later appeared in Schilling (1973)
and Ott et al. (1975). The contributions of Nelson (1982), Nelson (1983), and Nelson (1988) can
be considered substantial due to the development of exact ANOM critical values and its introduc-
tion to factorial treatment structures. The critical values for unbalanced designs were reported in
Stoline and Ury (1979) and Ury et al. (1980). A complete set of critical value tables for many
designs including sample size calculations can be found in Nelson et al. (2005). Use of ANOM
in one-way factorial experiments and analyzing proportions and counts were discussed in Ramig
(2016). A non-parametric alternative using ranks (ANOMR) was introduced by Bakir (1989) and
may be considered as another milestone in ANOM literature. Analysis of means for variances
(ANOMV) proposed by Wludyka and Nelson (1997) allows testing homogeneity of variances
among groups graphically. The ANOM procedure was later extended to accompany heteroscedas-
tic data (HANOM) by Nelson and Dudewicz (2002). Recently, Jayalath and Ng (2018) and Jayalath
and Ng (2020) developed the ANOMQ procedure (ANOM using studentized range or q distribu-
tion) to facilitate random factors in common statistical designs.
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One particular disadvantage of ANOM compared to ANOVA is the implementation of the proce-
dure in more complex study designs. The difficulty is mainly due to deriving its sampling distri-
bution. The ANOM procedure was primarily developed to analyze fixed factor effects, where the
levels of the factor consist of all possible levels. When the levels of a factor is a random sam-
ple from a larger population of possible levels, the factor is referred to as a random effect and an
adjustment to the sampling distribution is required. For instance, when testing means in a fixed
factor design, ANOM utilizes the equi-correlated multivariate t-distribution. When the factor is a
random effect, an adjustment should be made using ANOMQ that relies on the studentized range
distribution (Jayalath and Ng (2018)). However, regardless of the factor being fixed or random, the
ANOVA procedure uses the univariate F -distribution.

Mendeş and Yiğit (2013) conducted a comprehensive simulation study to compare and contrast
ANOVA and ANOM with regards to their type-I error and statistical power in single fixed factor
experiments. They concluded that for homogeneous data, both ANOVA and ANOM tests have
similar type-I error rates but both tests were negatively affected by the degree of heterogeneity
of the variances. They also note that for homogeneous data, the power of the tests was equally
affected by the combination of sample sizes and their variance ratios. For unbalanced designs,
they concluded that the ANOVA test is somewhat more powerful than the ANOM test. Further,
they noticed that the size of the group mean with respect to its variance also plays a role in the
discrepancy of power between the two procedures.

Many of the classical ANOM procedures such as ANOM, ANOMV, HANOM and ANOMR are
readily available in Nelson et al. (2005) and this work focuses on the latest developments on
ANOM methods that are useful in practice. Therefore the main focus of this paper is on the compu-
tation aspect of ANOM charts for both balanced and unbalanced completely randomized designs
with fixed and random factor effects.

In Section 2, we review the current ANOM, ANOMQ, and ANOMR methods and extend the
ANOMQ procedure to analyze data from unbalanced designs. Section 3 focuses on applications
and we exhibit various situations where these methods can appropriately be applied by empha-
sizing their calculations and inferential aspects when compared to ANOVA. Section 4 provides a
discussion on the ANOM procedures general qualities and reflects on some issues the procedures
have in regards to post hoc testing. In Section 5, we provide our concluding remarks.

2. Analysis of Means Approach

In this section, we discuss the ANOM procedures for both balanced and unbalanced single factor
designs in the presence of fixed and random factors. That is, we exhibit ANOM, ANOMQ, and
ANOMR procedures. The discussion is then extended for two-factor factorial treatment structure.
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78 K.P. Jayalath and J. Turner

2.1. Balanced Design

Let us consider a single factor completely randomized design (CRD) with t treatment levels each
with n observations. The corresponding fixed effects model can be written as

yij = µ+ τi + εij, i = 1, 2, . . . , t, j = 1, 2, . . . , n, (1)

where N = nt is the total number of observations and τi = µ − µi is the fixed effect of the
ith treatment level with respect to the overall mean µ. We also assume that the random errors
εij

i.i.d.∼ N(0, σ2).

For this model, observed treatment average ȳi• =
∑n

j=1 yij/n is an unbiased estimator for µi.
Highly disperse ȳi•’s would indicate significant mean effects. On the other hand, if none of the
effects is significantly different from the others, then the ȳi•’s must be close to the overall average
ȳ•• =

∑t
i=1

∑n
j=1 yij/N . In summary, the ANOM tests to see if at least one of the µi’s is signifi-

cantly different from the overall mean µ and graphically identifies exactly which treatment means
cause the observed significance. That is, in ANOM we plot the ȳi•’s along with ȳ•• in a decision
chart similar in appearance to a control chart to visualize the mean effects. Nelson (1981) indicates
that the joint distribution of the absolute mean differences |ȳi• − ȳ••| becomes an equi-correlated
t-dimensional t-distribution with correlation ρ = −1/(t − 1) with degrees of freedom N − t.
This distribution is also known as the Studentized maximum absolute deviation distribution or the
h-distribution. Its probability calculations are reported in Nelson (1993) and Nelson et al. (2005).

For this single-factor model, the following upper and lower decision limits, denoted as UDL and
LDL, respectively, will be used to make appropriate decisions about the mean effects:

UDL = ȳ•• + h(α; t, N − t)
√

(t− 1)MSE/N, (2)

LDL = ȳ•• − h(α; t, N − t)
√

(t− 1)MSE/N, (3)

where MSE =
∑t

i=1 s
2
i /t, si is the sample standard deviation of the i-th treatment level, N − t

is the degrees of freedom for the MSE, and t is the number of means being compared. The critical
value h(α, t,N − t) is the upper 100α percentage point of the h-distribution.

When the factor τ in the model in Equation (1) becomes random, we write the random effect model
as below.

yij = µ+ ai + εij, i = 1, 2, . . . , t, j = 1, 2, . . . , n. (4)

Here we assume that the factor ai
i.i.d.∼ N(0, σ2

a) and it is independent from the εij . Note that, when
the factor is fixed, it affects on the mean of yij , i.e., E(yij) = µ+ τi and V ar(yij) = σ2, but when
the factor is random, it affects on the variability of yij , i.e, E(yij) = µ and V ar(yij) = σ2 + σ2

a.

Therefore, in order to test the effect of the random effect we should consider the hypotheses
H0 : σ2

a = 0 vs Ha : σ2
a 6= 0. To test the significant dispersion among the treatment means,

Jayalath and Ng (2018) suggested using the ANOMQ procedure that relies on the Studentized-
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range (q) distribution. That is, plot ȳi• along with following UDL and LDL.

UDL = ω̂ +
1

2
q(α;t,N−t)

√
MSE/n, (5)

LDL = ω̂ − 1

2
q(α;t,N−t)

√
MSE/n, (6)

where ω̂ = (ȳ[1]• + ȳ[t]•)/2 is the mid-range estimate, and ȳ[i]• is the ith ordered treatment average.

Jayalath and Ng (2018) indicates that the widths of the ANOM charts are generally wider than that
of ANOMQ for more practical cases. However, they reported a few instances where this finding is
inconsistent. For instance, widths of both decision limits become approximately equal when only
two treatments means (t = 2) are compared at α = 0.01, 0.05 and 0.10 levels and the widths of
ANOMQ decision limits become wider when t ≥ 15 and N − t = 2 at α = 0.01 and t ≥ 16
and N − t = 3 at α = 0.001. This indicates that the decision limits in the ANOM procedure
should be selected depending on the random and fixed nature of the factors in the model. However,
the standard ANOVA does not exhibit such a change in its p-value calculations as it uses the F -
distribution to test both fixed and random factor effects.

2.2. Unbalanced Design

We reconsider the model given in Equation (1) with t treatment levels but each with varying number
of observations. That is, let i = 1, 2, . . . , t, and j = 1, 2, . . . , ni. Under the regular assumptions,
Nelson (1989) suggested the following decision limits to test means.

UDL = ȳ•• +m(α; t, N − t)
√

(N − ni)MSE/Nni, (7)

LDL = ȳ•• −m(α; t, N − t)
√

(N − ni)MSE/Nni, (8)

where N =
∑t

i=1 ni, MSE =
∑t

i=1 (ni − 1)s2
i /(N − t) and m(α; t, N − t) values are given in

Nelson (1989) and Nelson et al. (2005). As one expects, the limits for each treatment will depend
on their sample size (ni).

Analyzing random factor effects using ANOMQ for unbalanced designs needs careful attention.
The treatment average of the ith treatment can be written as ȳi• = µ+ ai + ε̄i•. This indicates that
V ar(ȳi•) = σ2

a + σ2/ni. Therefore, using the same arguments in Jayalath and Ng (2018), under
the null hypothesis H0 : σ2

a = 0, the ratio

ȳ[t]• − ȳ[1]•

σ̂

√
1
2

(
1
n[t]

+ 1
n[1]

) ∼ q(t,N−t),

where σ̂ =
√
MSE and ȳ[i]• is the ith ordered treatment average with sample size n[i].

To test the significance of the dispersion among treatment means we plot ȳi• along with the sample
mid-range estimate ω̂ = (ȳ[1]•+ȳ[t]•)/2. That is, we may declare the overall variability is significant

5
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80 K.P. Jayalath and J. Turner

if at least one ȳi• falls outside the following ANOMQ control limits:

UDL = ω̂ +
1

2
q(α;t,N−t) ∗

√
MSE

2

(
1

n[1]

+
1

n[t]

)
, (9)

LDL = ω̂ − 1

2
q(α;t,N−t) ∗

√
MSE

2

(
1

n[1]

+
1

n[t]

)
. (10)

2.3. Robust ANOM Charts

The ANOM procedure is fairly robust to the departure of the normality assumption. However,
Mendeş and Yiğit (2013) indicates that its statistical power depends on how well the homogeneity
of the variance assumption is satisfied. Data transformation is preferred when data are non-normal
and heterogeneous. In the cases where transformation is infeasible or inadequate, non-parametric
methods such as rank-based tests may be preferred. Analysis of means using ranks (ANOMR)
proposed by Bakir (1989) is a useful candidate for such data. The ANOMR procedure is a graphical
alternative for the popular Kruskal-Wallis (K-W) test.

To explain the ANOMR procedure we reconsider the single fixed factor unbalanced design dis-
cussed in Section (2.2) and assume that t populations of interest have a similar shape and
at most different in their location parameters. Like in the K-W test, we first assign ranks rij
(i = 1, 2, . . . , t, and j = 1, 2, . . . , ni) for all the responses yij ignoring their group memberships
in the combined sample of size N =

∑t
i=1 ni. Let R̄i• denotes ith treatment rank average, that is,

R̄i• =
∑ni

j=1 rij/ni and the overall average of the ranks is R̄•• =
∑t

i=1

∑ni

j=1 rij/N = (N + 1)/2.

Then, to test the null hypothesis that all t populations have exact same location parameter, the
calculated rank averages R̄i• are plotted along with the following upper and lower decision limits
to conduct the ANOMR test.

UDL = R̄•• + C(α, t, n1, n2, ..., nt), (11)
LDL = R̄•• − C(α, t, n1, n2, ..., nt), (12)

where C(α, t, n1, n2, ..., nt) is a constant that satisfies P
(
Max
1≤i≤t

|R̄i• − R̄••| ≥ C

)
= α under the

null hypothesis. For equal sample sizes, it is recommended to apply Bonferroni adjustment to
obtain suitable decision limits using C∗(α, t;n) = w( α

2t
, n(t − 1), n)/n − (N + 1)/2 in place

of C(α, t;n1, n2, ..., nt), where w( α
2t
, n(t − 1), n) is the upper 100( α

2t
)% percentile point of the

Wilcoxon rank sum statistic with sample sizes n(t − 1) and n. However, obtaining exact critical
values C(α, t, n1, n2, ..., nt) become computationally expensive for even relatively moderate t and
ni values. Bakir (1989) provided a limited set of exact critical values for a few specific significance
levels.

Due to unavailability of exact critical values for moderate sample sizes, Bakir (1989) suggested
using asymptotic procedures. Further, they clarified that the asymptotic joint distribution of the
|R̄i• − R̄••| is the same as that of the |ȳi• − ȳ••|. Therefore, it is recommended using the ANOM

6
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decision limits given in Equations (2), (3), (7), and (8) by replacing the observed data yij by their
ranks rij .

2.4. Factorial Treatment Structure

The ANOM procedure can be used to analyze data from completely randomized designs with fac-
torial treatment structures. Analysis of the fixed effects in the factorial structure is well developed
in ANOM and analysis of random effects can be found in Jayalath and Ng (2018).

Let us consider a model with two fixed factors (say A and B) in a factorial treatment structure

yijl = µ+ τi + βj + (τβ)ij + εijl, i = 1, 2, . . . , t, j = 1, 2, . . . , k, l = 1, 2, . . . , n, (13)

where εijl
i.i.d.∼ N(0, σ2) and N = ntk.

To test the interaction effect, Nelson (1988) suggested to plot zj(ii′) = xj(ii′) − x̄•(ii′) along with
the following decision limits, where xj(ii′) = ȳij• − ȳi′j• are the interaction slopes.

UDL = 0 + g(α, (t, k), tk(n− 1))
√
MSE

√
2(k − 1)/kn, (14)

LDL = 0− g(α, (t, k), tk(n− 1))
√
MSE

√
2(k − 1)/kn, (15)

where MSE =
∑

i

∑
j

∑
l

(yijl−ȳij•)2
tk(n−1)

and g(α, (t, k), tk(n− 1)) values are given in Nelson (1988)
and Nelson et al. (2005). When one of the factors has only two levels, say t = 2, we plot slopes
xj(12) = ȳ1j• − ȳ2j• along with the following decision limits:

UDL = x̄•12 + h(α, k, 2k(n− 1))
√
MSE

√
2(k − 1)/kn, (16)

LDL = x̄•12 − h(α, k, 2k(n− 1))
√
MSE

√
2(k − 1)/kn, (17)

where x̄•12 =
∑k

j=1 xj(12)/k. In either case, when the interaction is insignificant, one can continue
to test the main effects as follows.

Let f represent the number of levels for the factor of interest. That is, in our stetting f = t for
factor A and f = k for factor B. Then, to test the significance of the main effects, the treatment
averages are suggested to plot along with the following limits:

UDL = ȳ••• + h(α, f, tk(n− 1))
√
MSE

√
(f − 1)/N, (18)

LDL = ȳ••• − h(α, f, tk(n− 1))
√
MSE

√
(f − 1)/N, (19)

For random factor analysis, we consider the following model:

yijl = µ+ ai + bj + (ab)ij + εijl, i = 1, 2, . . . , t, j = 1, 2, . . . , k, l = 1, 2, . . . , n, (20)

where ai
i.i.d.∼ N(0, σ2

a), bj
i.i.d.∼ N(0, σ2

b ), (ab)ij
i.i.d.∼ N(0, σ2

ab) and εijl
i.i.d.∼ N(0, σ2) and

ai, bj, (ab)ij and εij are mutually independent. In this model all three factors are considered to
be random.

7

Jayalath and Turner: Analysis of Means Concepts and Computations

Published by Digital Commons @PVAMU, 2021



82 K.P. Jayalath and J. Turner

Jayalath and Ng (2018) considered the same model and discussed a case where factor A has only
two levels, t = 2. That is, they suggested plotting slopes xj(12) = ȳ1j• − ȳ2j• along with the
following decision limits to test the random interaction effect, H0 : σ2

ab = 0.

UDL = māb +
1

2
q(α;k,tk(n−1))

√
2MSE/n, (21)

LDL = māb −
1

2
q(α;k,tk(n−1))

√
2MSE/n, (22)

where māb = (x[k](12) + x[1](12))/2 is the mid-range estimate and in which x[j](12) is the jth order
statistic.

Then, one can continue to test main effects for factors A and B. The following decision limits
should be used for testing random factor effect for B.

UDL = mb̄ +
1

2
q(α;k,(t−1)(k−1))

√
σ̂2
ab/nt, (23)

LDL = mb̄ −
1

2
q(α;k,(t−1)(k−1))

√
σ̂2
ab/nt, (24)

where mb̄ = (ȳ•[k]• + ȳ•[1]•)/2 in which ȳ•[j]• is the jth order statistic and σ̂2
ab =∑

i

∑
j

(yij•−ȳi••−ȳ•j•+ȳ•••)2
(t−1)(k−1)

is the mean squares due to AB interaction.

The following decision limits should be used for testing random factor effect for A.

UDL = mā +
1

2
q(α;t,(t−1)(k−1))

√
σ̂2
ab/nk, (25)

LDL = mā −
1

2
q(α;t,(t−1)(k−1))

√
σ̂2
ab/nk, (26)

where mā = (ȳ[t]•• + ȳ[1]••)/2.

3. Illustrative Examples

Example 3.1.

Wine Quality Data: This data set contains wine measurements that include 11 physicochemical
variables and one quality variable, an aggregate score from multiple wine judges, taken on 4898
white wines reported in Cortez et al. (2009). The goal of the original study was to model wine
quality based on physicochemical variables. In spite, we would like to test whether the pH values
of white wines depend on the quality of the wines. The pH values of these wines range from 2.72
through 3.82 and the quality score ranged from three to nine. Thus, for our purpose, the quality
score will be viewed as an ordinal categorical factor with larger quality scores corresponding to
better quality.

8
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Table 1. The highest ten pH values of wines from each quality score

Quality 3 4 5 6 7 8
3.55 3.72 3.79 3.81 3.82 3.59
3.53 3.65 3.77 3.80 3.76 3.57
3.44 3.63 3.77 3.80 3.70 3.56
3.42 3.53 3.74 3.76 3.66 3.55

pH 3.37 3.53 3.69 3.75 3.65 3.55
3.31 3.52 3.67 3.75 3.64 3.55
3.24 3.51 3.66 3.74 3.64 3.53
3.24 3.49 3.66 3.72 3.61 3.47
3.24 3.49 3.66 3.72 3.60 3.46
3.23 3.49 3.63 3.69 3.59 3.45

ȳi• 3.357 3.556 3.704 3.754 3.667 3.528
si 0.124 0.081 0.058 0.039 0.073 0.050

To illustrate a balanced design setting for our first example, we select samples that contains the
highest 10 pH values from each of the quality groups. We discarded the data from the highest
quality score group (Quality 9) as it has only five observations. The selected data set, including its
summary statistics, is provided in Table 1. Upon examination, this data exhibit a slight deviation
from normality and the data from quality 3 show higher variability than the data from the remaining
quality scores. However, as both ANOVA and ANOM are robust against such departures of the
assumptions, we continue with the current data without seeking any transformation.

The sampled data follow the single fixed factor model described in Section (2.1). Therefore, we
first apply the ANOVA test and its results are shown in Table 2. The p-value from the ANOVA F-
test (< 0.001) indicates that there is at least two wine quality scores that have significantly different
average pH values at a 5% significance level. However, the ANOVA table does not indicate which
pair is significant or how many significant pairs among the six factor levels without further testing
but rather quantifies the overall significance by its p-value.

Table 2. ANOVA output for the highest ten pH values of wines from each quality score

Df Sum Sq Mean Sq F value p-value
Quality 5 1.0500 0.20999 36.40 < 0.001
Residuals 54 0.3115 0.00577

On the other hand, to exhibit how ANOM could answer those questions, we reanalyze this data
applying the single factor ANOM chart using Equations (2) and (3). As there are t = 6 qual-
ity groups each with n = 10 observations, and N = 60, the balanced ANOM critical value
h(0.05; 6, 54) = 2.72. Using the standard deviations of each group, we calculate MSE =
(0.1242 + 0.0812 + 0.0582 + 0.0392 + 0.0732 + 0.0502)/6 = 0.0058. As a result, the margin

9

Jayalath and Turner: Analysis of Means Concepts and Computations

Published by Digital Commons @PVAMU, 2021



84 K.P. Jayalath and J. Turner

3.
3

3.
4

3.
5

3.
6

3.
7

3.
8

Quality Score

A
ve

ra
ge

 p
H

 V
al

ue
s

3 4 5 6 7 8

UDL

LDL

Overall mean

Figure 1. ANOM chart for the highest ten pH values of vines from each quality score

of error of the decision limits becomes h(α; t, N − t)
√

(t− 1)MSE/N = 0.0596. Therefore, the
lower and upper decision limits for this data are LDL = 3.5943 − 0.0596 = 3.5347, UDL =
3.5943+0.0592 = 3.6540, respectively. To test the equality of mean pH among quality groups, the
average pH values for each quality score (ȳi•’s) are plotted along with the decision limits as shown
in Figure 1.

Similar to ANOVA, as the averages fall outside the decision limits of the ANOM chart (Figure
1), it rejects the null hypothesis of equality of means at the 5% significance level. Moreover, this
ANOM chart indicates that the average of the top 10 pH values for wines with the lowest quality
score (quality 3) and the highest (quality 8) are significantly lower than the overall average and
the wines scoring the middle (quality 5, 6, and 7) show significantly higher averages. Wines with
quality 4 seem to show an insignificant departure from the overall average. Further, this ANOM
chart indicates that wine quality may not be able to be uniquely determined by their highest pH
values because of the evident parabolic curve. If this were the case, one would expect the mean
pH against quality to be more linear if the ranks are ignored. Indeed, the ANOM helps visualizing
existing patterns in the data where other standard tests such as ANOVA may not naturally reveal
as much information.

Example 3.2.

Wine Quality Data-Random Sampling: In this example, we reconsider the same wine database
from Example 3.1. However, in this case, we randomly sample 20% of the data from each group
of quality except from quality 3 and 9 due to their low counts. For those two groups, we select all
the available data. The resulting data summaries are shown in Table 3.
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Table 3. Summary of the sampled wine data (20%) from each quality score

Quality 3 4 5 6 7 8 9
ȳi• 3.188 3.181 3.145 3.192 3.220 3.205 3.308
si 0.210 0.150 0.130 0.160 0.163 0.154 0.083
ni 20 33 290 440 176 35 5

This is an unbalanced data set with seven fixed factor levels (t = 7). To analyze this data, we
apply the single factor unbalanced design discussed in Section (2.2). The data do not indicate
any serious departure from normality. The assumption of variance homogeneity is violated due to
comparatively small variability of the data in quality 9, but the other groups show similar standard
deviations. Also note, that the small variability for quality 9 seems to coincide with its smaller
sample size. However, we apply both ANOM and robust ANOMR to offer comparisons between
the two procedures.

Table 4. ANOVA output for randomly sampled wines (20%) from each quality score

Df Sum Sq Mean Sq F value p-value
Quality 6 0.783 0.13053 5.597 < 0.001
Residuals 992 23.134 0.02332

The ANOVA table for this data is shown in Table 4. The ANOVA result indicates that the null
hypothesis of equality of means is rejected at the 5% significance level.

For this data, N = 999 and the unbalanced ANOM critical value m(0.05; 7, 992) = 2.68. Using
the overall average ȳ•• = 3.184 and the MSE = 0.0233, we calculate the upper and lower ANOM
decision limits given in Equations (7) and (8) for each wine quality score separately. As expected,
for the unbalanced design, the decision limits for each quality score are varying commensurate
with their sample sizes (Figure 2).

Based on the decision limits shown in Figure 2, this ANOM test rejects the null hypothesis of
equality of means providing the same conclusion as of ANOVA. Besides, it indicates that wines
with a quality scores 5 and 7 cause this significance. In practice, it may be of immediate interest
to further investigate the causes for such departures in these two groups. It is interesting to note
that though the average pH of quality 7 (ȳ7• = 3.220) is somewhat close to the overall mean
(ȳ•• = 3.184) it becomes significant, and on the other hand, though the average pH of wines with
the highest quality (ȳ9• = 3.308) shows the highest departure it is not significantly different from
the overall average. This is mainly due to the corresponding higher and lower sample sizes of those
two groups (n7 = 176, n9 = 5). This indicates how one can use ANOM charts to further investi-
gate practical significance of the observed results questioning observed statistically significant and
insignificant results via visualization.
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Figure 2. ANOM chart for pH values from randomly sampled wines (20%) from each quality score

As this data indicated some departures from variance homogeneity between quality scores, it may
be interesting to see how well the ANOMR method handles this data. As explained in Section
(2.3), to apply the ANOMR procedure, we first combined all the data ignoring the quality score
groupings and ranked them numerically from one through 999. The resulting rank summaries for
each group of wine quality are reported in Table 5.

Due to large sample sizes, it is impossible to obtain the exact critical values for ANOMR and
therefore we rely on the asymptotic ANOMR decision limits. That is, we use the exact ANOM
critical value m(0.05; 7, 992) = 2.68 in this ANOMR decision chart. For the ranked pH values, the
overall average R̄•• = 500.00 and the MSE = 80740.94. Then, using Equations (7) and (8), we
calculate upper and lower decision limits for the average ranked pH values for each quality score
and plotted them in Figure 3.

Table 5. Summary of the ranked data

Quality 3 4 5 6 7 8 9
R̄i• 405.750 490.636 458.048 483.809 606.318 570.857 558.400
s(R)i 285.773 314.273 280.061 285.521 277.625 299.408 312.616
ni 20 33 290 440 176 35 5

Similar to both ANOVA and ANOM, this test also indicates a significantly different central loca-
tions among the quality scores at the 5% significance level. Also, in both the ANOM and ANOMR
analyses quality 5 and 7 wines consistently become significant. It is interesting to note that this
ANOMR chart (Figure 3) separated low and high quality wines into two separate groups by the
overall mean. However, we may need further analyses to conclude the significance of this particu-
lar grouping. That is, similar to ANOVA we need additional tests to compare specific contrasts of
interest though its visual display may shed some light in certain contrast comparisons.

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 1, Art. 5

https://digitalcommons.pvamu.edu/aam/vol16/iss1/5



AAM: Intern. J., Vol. 16, Issue 1 (June 2021) 87

20
0

40
0

60
0

80
0

Quality Score

A
ve

ra
ge

 o
f r

an
ke

d 
pH

 V
al

ue
s

3 4 5 6 7 8 9

Overall mean

UDL

LDL

Figure 3. ANOMR chart for ranked pH values from randomly sampled wines (20%) from each quality score

In summary, since the raw data showed evidence against the homogeneity of the variance assump-
tion, we may favor ANOMR findings when compared to ANOM. Even though all three procedures
provide a consistent conclusion about the main hypothesis of equality of central location of pH val-
ues among quality scores, graphical testing provides virtuous information compared to the p-value
reported from the ANOVA F-test.

Example 3.3.

Telephone Ringing: In this example, we consider a hypothetical telephone ringing experiment
reported in Magezi (2015) where a researcher is interested in how quickly human listeners can
detect a telephone ringing in the presence of concurrent speech.

For our discussion, we discard some of the factors they originally reported. However, the response
variable of interest is the average reaction time (RT) in milliseconds and the design factor is the
listeners. As the listeners is a random sample of a set of possible listeners, it is considered as a
random factor. The resulting data and summary statistics are reported in Table 6.
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Table 6. Telephone Ringing data

L1 L2 L3 L4 L5 L6 L7 L8 L9
296.82 1203.90 1373.48 676.91 1196.12 1643.68 708.04 1390.64 1946.32
285.55 1159.17 1336.72 709.46 1293.70 1723.51 715.77 1358.31 1904.58
300.03 1161.27 1373.52 580.08 1249.96 1689.71 757.79 1283.64 1987.01
264.63 786.23 1018.99 532.64 929.54 1190.55 673.56 1047.35 1455.13
234.56 869.69 999.06 577.31 953.03 1236.43 610.81 1015.54 1501.93
178.34 922.95 987.12 566.63 943.91 1264.81 480.25 891.52 1472.95
128.99 552.84 756.14 354.54 684.76 753.43 454.00 581.74 943.28
153.88 551.63 747.83 407.98 648.58 796.68 424.30 712.05 993.63
65.11 539.44 657.57 287.05 615.26 856.15 431.35 556.07 943.28

ȳi• 211.990 860.791 1027.826 521.400 946.096 1239.439 583.986 981.873 1460.901
si 84.121 273.913 279.790 143.142 260.352 384.492 136.089 321.648 427.981

To analyze this data we first apply the standard ANOVA by employing the single random factor
model given in Equation (4). The resulting ANOVA table is shown in Table 7 and it indicates there
is significant variability among the listeners at the 5% significance level.

Table 7. ANOVA output for Telephone Ringing data

Df Sum Sq Mean Sq F value p-value
Listeners 8 10487254 1310907 16.82 < 0.001
Residuals 72 5613115 77960

On the other hand, since the factor is random we employ the balanced ANOMQ procedure dis-
cussed in Section (2.1) to conduct the graphical testing. For this data, t = 9, n = 9, N = 81, and
the critical value is q(0.05; 9, 72) = 4.523. The mid-range estimate for the average reaction time is
ω̂ = (1460.901 + 211.990)/2 = 836.446 and the MSE = 77959.94. Applying this information in
Equations (5) and (6), we calculated the upper and lower ANOMQ decision limits shown in Figure
4.

The ANOMQ chart visualizes each listeners’ direct contribution to the overall variability and it
indicates that listeners L1, L4, L6, L7, and L9 deviate significantly from the mid-range estimate.
Therefore, we concluded that the variability of the average reaction time among listeners is signifi-
cant and this result is consistent with the conclusion arrived at the ANOVA test. However, the main
interest is to estimate the variability due to listeners, and not so much on listeners’ averages and
their differences unless the selected listeners are identified with specific group characteristics. The
graphical test of ANOMQ helps to identify main causes of the observed significant variability due
to the listener. Since the listeners represent a random sample and perhaps from a large population,
we may generalize this finding to the entire population. Based on the available information and the
results obtained from the ANOMQ chart, there are no additional conclusions regarding the nature,
trend, or cause of the observed significance can be provided.
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Figure 4. ANOMQ chart for Telephone Ringing data

Example 3.4.

Genome Size: In this example, we focus on a genome data set that represents the genome size,
measured in picograms of DNA per haploid cell, in several large groups of crustaceans that were
reported in Gregory (2014). However, McDonald (2014) indicated that the closely related species
are likely to have similar genome sizes because they recently descended from a common ancestor
and therefore data from closely related species would not be independent. Hence, they randomly
chose one species from each family to represent the genome sizes. The resulting sampled data are
reported in Table 8. In this example, we want to use a graphical test to answer a biological question
that whether some groups of crustaceans have different genome sizes than others.
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Table 8. Genome sizes of Crustaceans

Amphipods Barnacles Branchiopods Copepods Decapods Isopods Ostracods
0.74 0.67 0.19 0.25 1.60 4.66 1.71 0.46
0.95 0.90 0.21 0.25 1.65 4.70 2.35 0.70
1.71 1.23 0.22 0.58 1.80 4.75 2.40 0.87
1.89 1.40 0.22 0.97 1.90 4.84 3.00 1.47
3.80 1.46 0.28 1.63 1.94 5.23 5.65 3.13
3.97 2.60 0.30 1.77 2.28 6.20 5.70

Genom 7.16 0.40 2.67 2.44 8.29 6.79
size 8.48 0.47 5.45 2.66 8.53 8.60

13.49 0.63 6.81 2.78 10.58 8.82
16.09 0.87 2.80 15.56
27.00 2.77 2.83 22.16
50.91 2.91 3.01 38.00
64.62 4.34 38.47

4.50 40.89
4.55

ȳi• 15.447 1.377 0.789 2.264 8.757 5.002 1.326
si 20.406 0.671 0.979 2.352 10.102 2.745 1.075

This data fail to satisfy both the assumptions of normality and the homogeneity of variances.
Therefore, we applied the natural log transformation and found that the transformed data satisfies
the assumptions. Summary of the log-transformed data is given in Table 9.

Table 9. Summary of the ln(Genome size) data

Amphipods Barnacles Branchiopods Copepods Decapods Isopods Ostracods
ȳi• 1.878 0.229 -0.743 0.256 1.634 1.453 0.051
si 1.450 0.463 0.956 1.206 0.956 0.617 0.739
ni 13 6 12 9 29 9 5

Since the species were randomly selected from each family, we consider the factor species as ran-
dom and employ the random factor unbalanced design discussed in Section (2.2). Table 10 shows
the ANOVA output for log transformed genome data. The results indicate that there is significant
species specific variability among the crustaceans at the 5% significance level.

Table 10. ANOVA output for Genome sizes of Crustaceans

Df Sum Sq Mean Sq F value p-value
Crustaceans 6 72.93 12.155 11.72 < 0.001
Residuals 76 78.80 1.037
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For the summary shown in Table 9, n[1] = 12, n[7] = 13, MSE = 1.037, and the mid-
range estimate ω̂ = (−0.743 + 1.878)/2 = 0.568. The critical value for the decision limits is
q(0.05, 7, 76) = 4.283. Then, using Equations (9) and (10) the decision limits are calculated and
plotted along with the treatment averages as shown in the ANOMQ chart in Figure 5.

As it is shown in Figure 5, the average genome sizes of Amphipods, Branchiopods, Decapods,
and Isopods have highly deviated from the mid-range estimate indicating a significant variation in
median genome size among these seven taxonomic groups of crustaceans. Also, this ANOMQ chart
suggests that there are three different sets of genome sizes that may cause the significant variability.
That is, a group with large genome size that includes Amphipods, Decapods, and Isopods, a group
with middle genome size that includes Barnacles, Copepods, and Ostracods, and a group with small
genomes that includes only Branchiopods. Apart from the evident groupings, it is clear from this
analysis that some groups of crustaceans have different genome sizes than others and that causes
the observed significant result. This analysis further clarifies the advantage of using graphical tests
such as ANOMQ in explaining sources of variability in an experiment for the researches and
scientists with minimal statistical knowledge when compared to standard ANOVA approach.
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Figure 5. ANOMQ chart for Genome sizes of Crustaceans

Example 3.5.

Transconductance Tube: Gupta et al. (2020) reported results from a factorial experiment that was
performed to study the effect of plate temperature and filament lighting on transconductance of a
certain type of tube. That consists with two levels of plate temperature (T1 and T2) and four levels
of filament lighting current L1, L2, L3, and L4; three repeats were made for each combination
of plate temperature and filament current. The transconductance measurements are given in Table
11. In this example, we assume both the factors are fixed and apply both ANOVA and ANOM
procedures.
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Table 11. Transconductance tube data

T1 T2 ȳ•j•
L1 3774 4364 4374 4216 4524 4136 4231.333
L2 4710 4180 4514 3828 4170 4180 4263.667
L3 4176 4140 4398 4122 4280 4226 4223.667
L4 4540 4530 3964 4484 4332 4390 4373.333
ȳi•• 4305.333 4240.667 4273

We analyze this data by employing the two-factor factorial design with an interaction effect. The
resulting ANOVA table is shown in Table 12 and it indicates that all three effects are insignificant
at the 5% significance level.

Table 12. ANOVA output for Transconductance tube data

Df Sum Sq Mean Sq F value p-value
Current 3 85943 28648 0.556 0.652
Temperature 1 25091 25091 0.487 0.495
Interaction 3 253668 84556 1.640 0.220
Residuals 16 825075 51567

Then, in order to conduct the ANOM, we first calculate the interaction slope terms xj(12) = ȳ1j•−
ȳ2j• for j = 1, 2, 3, 4. That yields, x1(12) = −121.333, x2(12) = 408.667, x3(12) = 28.667, and
x4(12) = −57.333. These values are plotted along with the appropriate decision limits given in
Equations (16) and (17) as shown in Figure 6(a). It is clear that none of the slope estimates falls
outside the decision limits indicating an insignificant interaction effect.

With no significant interaction, we continue to test the main effects using the decision limits given
in Equations (18) and (19) in where we plot the treatment averages shown in Table 11 along
with overall average as shown in Figures 6(b) and (c). As observed in the ANOVA, the ANOM
method also indicates that both the main effects are insignificant. However, the ANOM tests help
visualize the underlying structure of the insignificance factors. Additionally, it helps identify near
significance effects such as the interaction effect due to the factor level combination L1(T1, T2)
shown in Figures 6(a) that may be useful to the researches in evaluating practical significance.
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Figure 6. ANOM chart for Transconductance tube data

4. Discussion

The advantages of using analysis of means procedures in a vast array of design settings have been
illustrated by the examples provided in this manuscript. The graphical representation of the tests
allows for straight forward explanation of significant central tendencies and sources of variability
that can especially help users with minimal statistical knowledge.

An important note on the ANOM procedure, which can also create some confusion when drawing
comparisons to ANOVA, is on the issue of post hoc testing. ANOM provides a specific set of
post hoc tests comparing individual effects to the overall average. These comparisons directly
correspond to the overall ANOM test and are “free” in the sense that they do not create any need
for additional post hoc testing adjustments. The ANOVA procedure does not have this ability. Often
times, users of ANOVA conceptually confound the overall ANOVA F-test with the additional post
hoc testing procedures used to provide additional insight to the rejection of the overall test.

It is redundant to compare ANOM and ANOVA procedures in terms of post hoc testing because
the same testing procedures will often be used for both procedures when specific comparisons
are needed. As illustrated in the balanced fixed factor analysis of Example 3.1, the individual
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comparisons to the global mean produced by ANOM allows for one to investigate patterns and
determine which levels of the wine quality score contributed to the significant result. However,
if one was interested in direct comparison of means, say all pairwise comparison of the levels of
quality score, the ANOM post hoc tests cannot answer these questions directly. A post hoc testing
procedure such as Tukey’s honest significant difference (HSD) would need to be applied regardless
of using ANOM or ANOVA as the global test.

5. Conclusion

The purpose of this work is to provide a comprehensive study of analyzing data from single-factor
and two-factor designs using graphical tests while highlighting their advantages to an ANOVA
alternative. We considered both fixed and random factor analyses highlighting differences in their
methodological developments and inferential procedures. The examples throughout this document
provide technical insight to various real situations such as handling both balanced and unbalanced
designs in the fixed or random effects settings. The ANOMR applications were also demonstrated
as robust alternatives to the general ANOM procedure.

Due to its exceptional data visualization ability and ease of interpretation, the ANOM procedures
should be considered a strong alternative for the ANOVA. In addition to interpretation advantages,
we also believe that introduction of ANOM procedures in the early stages of statistical education
may help students and researches to understand fundamental concepts in statistical testing and
further enhance the interpretation of the p-value for statistical versus practical significance.
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