Some Summation Theorems for Clausen's Hypergeometric Functions with Unit Argument

M. I. Qureshi
Jamia Millia Islamia (A Central University)

Mohammad Shadab
Glocal University

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam

Part of the Special Functions Commons

Recommended Citation
Available at: https://digitalcommons.pvamu.edu/aam/vol15/iss1/27

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of Digital Commons @PVAMU. For more information, please contact hvkoshv@pvamu.edu.
Some Summation Theorems for Clausen’s Hypergeometric Functions with Unit Argument

M.I. Qureshi and Mohammad Shadab

1Department of Applied Sciences and Humanities
Faculty of Engineering and Technology
Jamia Millia Islamia (A Central University)
New Delhi 110025, India
miqueshi_delhi@yahoo.co.in;

2Department of Natural and Applied Sciences
Glocal School of Science and Technology
Glocal University
Saharanpur (U.P.) 247121, India
shadabmohd786@gmail.com;

*Corresponding Author

Received: September 20, 2019; Accepted: March 22, 2020

Abstract

Motivated by the work on hypergeometric summation theorems, we establish new summation formula for Clausen’s hypergeometric function with unit argument in terms of pi and natural logarithms of some rational and irrational numbers. For the application purpose, we derive some new and modified summation theorems for Clausen’s hypergeometric functions using our new formula.

Keywords: Clausen’s hypergeometric function; Digamma (Psi) function; Generalized hypergeometric series; Euler’s constant.

MSC 2010 No.: 33B15, 33C20, 33C05, 33C90
1. Introduction

The aim of this research article is to establish an elegant and manifestly relevant summation formula for the Clausen’s series (e.g., see Bailey (1935), Rainville (1960), Slater (1966), Srivastava and Manocha (1984)) with the positive argument and to support interest in generalized hypergeometric functions.

Indeed, the classical field of hypergeometric functions $pF_q(z)$ has been recently achieved a substantial progress by investigating, generalizing and producing various relationships between them. Often, many functions contain the integers and fractions in their numerator and denominator parameters in different ways (see mentioned papers of Gradshteyn and Ryzhik (2014), Krattenhalter and Rivoal (2006), Lavoi et al. (1996), Milgram (2007), Miller and Srivastava (2010), Miller and Paris (2011, 2012), Prudnikov et al. (1990), Rainville (1960), Rao et al. (2005), Shpot (2007, and see also references therein)).

With reference to the importance of applications in mathematics, statistics and mathematical physics, the hypergeometric functions readily reduce to a gamma function. A large number of authors notably C.F. Gauss, M.M. Kummer, S. Ramanujan and many others have explored the field of hypergeometric function and its applications.

The papers by Karl (1974), Kim et al. (2014), Lewanowicz (1997), Rathie and Rakha (2008), Rathie and Paris (2013) mentioned at the beginning, as well as the present one, discuss the summation formulas for the functions $3F_2(1)$ that belong to the category of Clausen’s hypergeometric function.

We are now motivated enough by the work in the directions of summation theorems for Clausen’s hypergeometric functions indicated above. Term by term integration of special polynomials and Appell functions appear in the expansions in Chu (2012), Gauss (1813), Khan et al. (2019), Mubeen et al. (2007), Nisar et al. (2018), Nisar et al. (2017), and Srivastava et al. (1984).

2. Preliminaries

The generalized hypergeometric function pF_q is defined by

$$pF_q\left(\frac{(a_p)_p}{(b_q)_q}, z\right) = \sum_{m=0}^{\infty} \frac{[(a_p)_m] z^m}{[(b_q)_m] m!},$$

(1)

where

- p and q are positive integers or zero,
- z is a complex variable,
- (a_p) designates the set a_1, a_2, \ldots, a_p,
- the numerator parameters a_1, \ldots, a_p and the denominator parameters b_1, \ldots, b_q take on complex
values, \(b_j, j = 1, \ldots, q \), being non-negative integers,

- \([(a_r)]_k = \prod_{i=1}^{r} (a_i)_k \). By convention, a product over the empty set is 1.
- \((a)_k \) is the Pochhammer's symbol.

Thus, if a numerator parameter is a negative integer or zero, the \(pF_q \) series terminates and then we are led to a generalized hypergeometric polynomial.

The widely-used Pochhammer symbol \((\lambda)_\nu \) \((\lambda, \nu \in \mathbb{C}) \) is defined by

\[
(\lambda)_\nu := \frac{\Gamma(\lambda + \nu)}{\Gamma(\lambda)} = \begin{cases}
1, & (\nu = 0; \lambda \in \mathbb{C} \setminus \{0\}), \\
\lambda (\lambda + 1) \ldots (\lambda + n - 1), & (\nu = n \in \mathbb{N}; \lambda \in \mathbb{C}),
\end{cases}
\]

it being understood conventionally that \((0) = 1 \) and assumed tacitly that the \(\Gamma \) quotient exists.

In 1856, Karl Weierstrass gave a different definition of gamma function

\[
\frac{1}{\Gamma(z)} = z \exp(\gamma z) \prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right) \exp\left(-\frac{z}{n} \right),
\]

where \(\gamma = 0.577215664901532860606512090082402431042 \ldots \), is called the Euler-Mascheroni constant and \(\frac{1}{\Gamma(z)} \) is an entire function of \(z \) and

\[
\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} - \ell n(n) \right).
\]

The function

\[
\psi(z) = \frac{d}{dz} \{ \ell n \Gamma(z) \} = \frac{\Gamma'(z)}{\Gamma(z)},
\]

or, equivalently

\[
\ell n \Gamma(z) = \int_{1}^{z} \psi(\zeta) d\zeta,
\]

is the logarithmic derivative of the gamma function.

Gauss (1813) discovered an interesting formula for digamma (Psi) function as follows

\[
\psi(p/q) = -\gamma - \ell n((q) - \frac{\pi}{2} \cot \left(\frac{\pi p}{q} \right) + \sum_{j=1}^{[\frac{q}{2}]} \left\{ \cos \left(\frac{2\pi j p}{q} \right) \ell n \left(2 - 2 \cos \frac{2\pi j}{q} \right) \right\},
\]

where \(1 \leq p < q \) and \(p, q \) are positive integers and accent (prime) to right of the summation sign indicates the term corresponding to (last term) \(j = \frac{q}{2} \) (when \(q \) is positive even integer) should be divided by 2.

A simplified treatment of the above formula was made by Murty and Saradha (2007) (see also, Lahmer (1975)) such that

\[
\psi(p/q) = -\gamma - \ell n(2q) - \frac{\pi}{2} \cot \left(\frac{\pi p}{q} \right) + 2 \sum_{j=1}^{[\frac{q}{2}]} \left\{ \cos \left(\frac{2\pi j p}{q} \right) \ell n \sin \left(\frac{\pi j}{q} \right) \right\},
\]

where \(p = 1, 2, 3, \ldots, (q - 1), q = 2, 3, 4, \ldots; (p, q) = 1 \).
In volume III of Prudnikov et al. (1990), summation theorems for Clausen’s hypergeometric functions

\[_3F_2 \left[{1, 1, \frac{1}{4}; \frac{2}{3}, \frac{5}{4}; 1} \right], _3F_2 \left[{1, 1, \frac{1}{3}; \frac{2}{3}, \frac{4}{3}; 1} \right], _3F_2 \left[{1, 1, \frac{3}{8}; \frac{11}{8}; 1} \right], _3F_2 \left[{1, 1, \frac{1}{2}; \frac{3}{2}; 1} \right], \]

\[_3F_2 \left[{1, 1, \frac{5}{8}; \frac{13}{8}; 1} \right], _3F_2 \left[{1, 1, \frac{2}{3}; \frac{5}{3}; 1} \right], _3F_2 \left[{1, 1, \frac{3}{4}; \frac{7}{4}; 1} \right], _3F_2 \left[{1, 1, \frac{9}{8}; \frac{17}{8}; 1} \right], \]

\[_3F_2 \left[{1, 1, \frac{7}{8}; \frac{15}{8}; 1} \right], _3F_2 \left[{1, 1, \frac{5}{2}; \frac{7}{2}; 1} \right], _3F_2 \left[{1, 1, \frac{5}{4}; \frac{9}{4}; 1} \right], _3F_2 \left[{1, 1, \frac{3}{2}; \frac{5}{2}; 1} \right], \]

\[_3F_2 \left[{1, 1, \frac{11}{8}; \frac{19}{8}; 1} \right], _3F_2 \left[{1, 1, \frac{7}{4}; \frac{11}{4}; 1} \right], \]

are available.

In the paper of Qureshi et al. (2018), we have given summation theorems for Clausen’s hypergeometric functions \(_3F_2[1, 1, n; 2, n + 1; 1] \), where \(n = 3, 4, 5, \ldots, 52\).

Motivated by the work, recorded in the table of Prudnikov et al. (1990) and a paper of Qureshi et al. (2018), we have given some new and modified summation theorems for Clausen’s hypergeometric functions using a celebrated formula of Gauss for digamma function in Sections 4 and 5 respectively.

3. Main Result

In this section, we shall establish an interesting formula for digamma function in the terms of Clausen’s hypergeometric function and then connecting it with the Gauss formula for digamma function, we obtain our desired result.

Let us recall the Weierstrass definition of gamma function (3)

\[
\frac{1}{\Gamma(z)} = z \exp (\gamma z) \prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right) \exp \left(-\frac{z}{n} \right).
\]

Taking log to the base e and making some manipulations, we get

\[
-\ell n \Gamma(z) = \ell n z + \gamma z + \sum_{n=1}^{\infty} \left\{ \ell n \left(1 + \frac{z}{n} \right) - \frac{z}{n} \right\}.
\]

Now, differentiating with respect to \(z\) and making some simplifications, we get

\[
\frac{\Gamma'(z)}{\Gamma(z)} = -\frac{1}{z} - \gamma - \sum_{n=1}^{\infty} \left\{ \frac{1}{n + z} - \frac{1}{n} \right\},
\]

\[
\frac{\Gamma'(z)}{\Gamma(z)} = -\frac{1}{z} - \gamma + \sum_{n=1}^{\infty} \left\{ \frac{z}{n(n + z)} \right\}.
\]

Applying the definition of generalized hypergeometric function (1) in the equation (9), we get new
and general result for digamma function in terms of Clausen’s hypergeometric function as follows

\[\psi(z) = \frac{\Gamma'(z)}{\Gamma(z)} = -\frac{1}{z} - \gamma + \left(\frac{z}{1+z} \right) \sum_{n=0}^{\infty} \frac{z^n}{(n+1)^2} \]

where \(z \neq 0, -1, -2, -3, \ldots \) and \(\psi(z) \) denotes the Psi (or Digamma) function.

On setting \(z = \frac{p}{q} \) in Equation (10), we get

\[\psi\left(\frac{p}{q}\right) = -\gamma - \frac{q}{p} + \left(\frac{p}{p+q} \right) \sum_{n=0}^{\infty} \frac{\left(\frac{p}{q}\right)^n}{(n+1)^2} \]

Now, we will connect our above obtained result for digamma function (11) with the Gauss celebrated formula for digamma function (7), and get the desired result for Clausen’s hypergeometric function in terms of \(\pi \), and natural logarithm of rationals and irrationals as follows

\[\sum_{n=0}^{\infty} \frac{\left(\frac{p}{q}\right)^n}{(n+1)^2} = \left(\frac{q}{p} \right) \left(\ln \frac{2}{q} - \frac{\pi}{2} \cot \left(\frac{\pi p}{q} \right) \right) \]

Now, we will connect our above obtained result for digamma function (11) with the Gauss celebrated formula for digamma function (7), and get the desired result for Clausen’s hypergeometric function in terms of \(\pi \), and natural logarithm of rationals and irrationals as follows

\[\sum_{n=0}^{\infty} \frac{\left(\frac{p}{q}\right)^n}{(n+1)^2} = \left(\frac{q}{p} \right) \left(\ln \frac{2}{q} - \frac{\pi}{2} \cot \left(\frac{\pi p}{q} \right) \right) \]

\[\sum_{j=1}^{\left[\frac{q}{p}\right]} \left\{ \cos \left(\frac{2\pi pj}{q} \right) \ln \sin \left(\frac{\pi j}{q} \right) \right\} \]
\[3F_2 \left[\begin{array}{c} 1, 1, \frac{4}{3}; \\
2, \frac{7}{3};
\end{array} \right] = \left\{ 12 - \frac{2\pi}{\sqrt{3}} - 6\ln 3 \right\}, \quad (16)\]
\[3F_2 \left[\begin{array}{c} 1, 1, \frac{10}{3}; \\
2, \frac{13}{3};
\end{array} \right] = \frac{10}{7} \left\{ \frac{117}{28} - \frac{\sqrt{3}\pi}{6} - \frac{3}{2} \ln 3 \right\}, \quad (17)\]

\[3F_2 \left[\begin{array}{c} 1, 1, \frac{6}{5}; \\
2, \frac{11}{5};
\end{array} \right] = 6 \left\{ 5 - \ln 10 - \left(\frac{1 + \sqrt{5}}{\sqrt{(10 - 2\sqrt{5})}} \right) \frac{\pi}{2} + \frac{1}{2} \left(\sqrt{5}\ln \left(\frac{\sqrt{5} - 1}{2} \right) - \ln \frac{\sqrt{5}}{4} \right) \right\}, \quad (18)\]
\[3F_2 \left[\begin{array}{c} 1, 1, \frac{7}{5}; \\
2, \frac{12}{5};
\end{array} \right] = \frac{7}{2} \left\{ \frac{5}{2} - \ln 10 - \left(\frac{\sqrt{5} - 1}{\sqrt{(10 + 2\sqrt{5})}} \right) \frac{\pi}{2} + \frac{1}{2} \left(\sqrt{5}\ln \left(\frac{\sqrt{5} + 1}{2} \right) - \ln \frac{\sqrt{5}}{4} \right) \right\}, \quad (19)\]
\[3F_2 \left[\begin{array}{c} 1, 1, \frac{8}{5}; \\
2, \frac{13}{5};
\end{array} \right] = \frac{8}{3} \left\{ \frac{5}{3} - \ln 10 + \left(\frac{\sqrt{5} - 1}{\sqrt{(10 + 2\sqrt{5})}} \right) \frac{\pi}{2} + \frac{1}{2} \left(\sqrt{5}\ln \left(\frac{\sqrt{5} + 1}{2} \right) - \ln \frac{\sqrt{5}}{4} \right) \right\}, \quad (20)\]

\[3F_2 \left[\begin{array}{c} 1, 1, \frac{9}{5}; \\
2, \frac{14}{5};
\end{array} \right] = \frac{9}{4} \left\{ \frac{5}{4} - \ln 10 + \left(\frac{\sqrt{5} + 1}{\sqrt{(10 - 2\sqrt{5})}} \right) \frac{\pi}{2} + \frac{1}{2} \left(\sqrt{5}\ln \left(\frac{\sqrt{5} - 1}{2} \right) - \ln \frac{\sqrt{5}}{4} \right) \right\}, \quad (21)\]
\[3F_2 \left[\begin{array}{c} 1, 1, \frac{1}{6}; \\
2, \frac{7}{6};
\end{array} \right] = \left\{ \sqrt{3} \frac{\pi}{10} + \frac{3}{10} \ln 3 + \frac{2}{5} \ln 2 \right\}, \quad (22)\]
\[3F_2 \left[\begin{array}{c} 1, 1, \frac{7}{6}; \\
2, \frac{13}{6};
\end{array} \right] = 7 \left\{ 6 - \ln 12 - \sqrt{3} \frac{\pi}{2} - \ln \sqrt{3} \right\}, \quad (23)\]
\[3F_2 \left[\begin{array}{c} 1, 1, \frac{11}{6}; \\
2, \frac{17}{6};
\end{array} \right] = \frac{11}{5} \left\{ \frac{6}{5} - \ln 12 + \sqrt{3} \frac{\pi}{2} - \ln \sqrt{3} \right\}, \quad (24)\]

\[3F_2 \left[\begin{array}{c} 1, 1, \frac{11}{10}; \\
2, \frac{21}{10};
\end{array} \right] = 11 \left\{ 10 - \ln 20 - \left(\frac{\sqrt{(10 + 2\sqrt{5})}}{\sqrt{5} - 1} \right) \frac{\pi}{2} + \frac{1}{2} \left(\sqrt{5}\ln (\sqrt{5} - 2) - \ln \sqrt{5} \right) \right\}, \quad (25)\]
\[3F_2 \left[\begin{array}{c} 1, 1, \frac{13}{10}; \\
2, \frac{23}{10};
\end{array} \right] = \frac{13}{3} \left\{ \frac{10}{3} - \ln 20 - \left(\frac{\sqrt{(10 - 2\sqrt{5})}}{\sqrt{5} + 1} \right) \frac{\pi}{2} + \frac{1}{2} \left(\sqrt{5}\ln (\sqrt{5} + 2) - \ln \sqrt{5} \right) \right\}, \quad (26)\]
\[3F_2 \left[\begin{array}{c} 1, 1, \frac{17}{10}; \\
2, \frac{27}{10};
\end{array} \right] = \frac{17}{7} \left\{ \frac{10}{7} - \ln 20 + \left(\frac{\sqrt{(10 - 2\sqrt{5})}}{\sqrt{5} + 1} \right) \frac{\pi}{2} + \frac{1}{2} \left(\sqrt{5}\ln (\sqrt{5} + 2) - \ln \sqrt{5} \right) \right\}, \quad (27)\]
\[3F_2 \left[\begin{array}{c} 1, 1, \frac{19}{10}; \\
2, \frac{29}{10};
\end{array} \right] = \frac{19}{9} \left\{ \frac{10}{9} - \ln 20 + \left(\frac{\sqrt{(10 + 2\sqrt{5})}}{\sqrt{5} - 1} \right) \frac{\pi}{2} + \frac{1}{2} \left(\sqrt{5}\ln (\sqrt{5} - 2) - \ln \sqrt{5} \right) \right\}, \quad (28)\]
\[3 \text{F}_2 \left[\begin{array}{c} 1, 1, \frac{13}{12}; \\ 2, \frac{25}{12}; \\ 1 \end{array} \right] = 13 \left\{ 12 - \ln 24 - \left(2 + \sqrt{3} \right) \frac{\pi}{2} + \sqrt{3} \ln (2 - \sqrt{3}) - \ln \sqrt{3} \right\}, \quad (29)\]

\[3 \text{F}_2 \left[\begin{array}{c} 1, 1, \frac{17}{12}; \\ 2, \frac{29}{12}; \\ 1 \end{array} \right] = 17 \left\{ \frac{12}{5} - \ln 24 - \left(2 - \sqrt{3} \right) \frac{\pi}{2} + \sqrt{3} \ln (2 + \sqrt{3}) - \ln \sqrt{3} \right\}, \quad (30)\]

\[3 \text{F}_2 \left[\begin{array}{c} 1, 1, \frac{19}{12}; \\ 2, \frac{31}{12}; \\ 1 \end{array} \right] = 19 \left\{ \frac{12}{7} - \ln 24 + \left(2 - \sqrt{3} \right) \frac{\pi}{2} + \sqrt{3} \ln (2 + \sqrt{3}) - \ln \sqrt{3} \right\}, \quad (31)\]

\[3 \text{F}_2 \left[\begin{array}{c} 1, 1, \frac{23}{12}; \\ 2, \frac{35}{12}; \\ 1 \end{array} \right] = 23 \left\{ \frac{12}{11} - \ln 24 + \left(2 + \sqrt{3} \right) \frac{\pi}{2} + \sqrt{3} \ln (2 - \sqrt{3}) - \ln \sqrt{3} \right\}. \quad (32)\]

Proof (Independent proof of summation theorem (25)):

On setting \(z = \frac{1}{10} \) in our derived formula (10), we get

\[\psi \left(\frac{1}{10} \right) = -\gamma - 10 + \frac{1}{11} \text{F}_2 \left[\begin{array}{c} 1, 1, \frac{11}{10}; \\ 2, \frac{21}{10}; \\ 1 \end{array} \right]. \quad (33)\]

Now, we calculate the value of \(\psi \left(\frac{1}{10} \right) \) using the formula (7) as follows

\[\psi \left(\frac{1}{10} \right) = -\gamma - \ln 20 - \left(\sqrt{\frac{10 + 2\sqrt{5}}{\sqrt{5} - 1}} \right) \frac{\pi}{2} + \frac{1}{2} \left\{ \sqrt{5} \ln (\sqrt{5} - 2) - \ln \sqrt{5} \right\}. \quad (34)\]

On comparing the equations (33) and (34), we get the desired result (25). Similarly, we can derive other summation theorems.

5. Some modified summation theorems for Clausen’s function

In this section, we have presented some corrected forms of summation theorems given in the table of Prudnikov et al. (1990). The errata are found in the following summation theorems

\[3 \text{F}_2 \left[\begin{array}{c} 1, 1, \frac{13}{8}; \\ 2, \frac{21}{8}; \\ 1 \end{array} \right] = \frac{13}{50} \left\{ 16 - 5(\sqrt{2} - 1)\pi - 40\ln 2 + 10\sqrt{2}\ln (1 + \sqrt{2}) \right\}, \quad (35)\]

\[3 \text{F}_2 \left[\begin{array}{c} 1, 1, \frac{15}{8}; \\ 2, \frac{23}{8}; \\ 1 \end{array} \right] = \frac{15}{196} \left\{ 32 + 7(1 + \sqrt{2})\pi - 112\ln 2 - 28\sqrt{2}\ln (1 + \sqrt{2}) \right\}, \quad (36)\]

\[3 \text{F}_2 \left[\begin{array}{c} 1, 1, \frac{5}{3}; \\ 2, \frac{8}{3}; \\ 1 \end{array} \right] = \frac{5\sqrt{3}}{12} \left\{ 3\sqrt{3}(1 - \ln 3) - \pi \right\}. \quad (37)\]
where the symbol \(\neq \) exhibits the fact that each of the equations (35), (36) and (37) does not hold true as stated.

The modified forms of the above summation theorems are as follows

\[
\begin{align*}
\mathbf{3F_2} & \left[\begin{array}{ccc} 1, 1, \frac{13}{8} ; & 2, \frac{21}{8} ; & 1 \\ 1 \end{array} \right] = \frac{13}{50} \left\{ 16 + 5(\sqrt{2} - 1)\pi - 40\ell n 2 + 10\sqrt{2}\ell n (1 + \sqrt{2}) \right\}, \\
\mathbf{3F_2} & \left[\begin{array}{ccc} 1, 1, \frac{5}{3} ; & 2, \frac{8}{3} ; & 1 \\ 1 \end{array} \right] = \frac{5\sqrt{3}}{12} \left\{ 3\sqrt{3}(1 - \ell n 3) + \pi \right\}, \\
\mathbf{3F_2} & \left[\begin{array}{ccc} 1, 1, \frac{15}{8} ; & 2, \frac{23}{8} ; & 1 \\ 1 \end{array} \right] = \frac{15}{196} \left\{ 32 + 14(1 + \sqrt{2})\pi - 112\ell n 2 - 28\sqrt{2}\ell n (1 + \sqrt{2}) \right\}.
\end{align*}
\]

Remark 5.1.

We can not obtain the summation theorems of Sections 4 and 5 with the help of summation theorems of Whipple, Dixon, Watson and other associated contiguous relations of \(\mathbf{3F_2} \).

6. Conclusion

We derived new summation formula for Clausen’s hypergeometric function with unit argument using the digamma function. We conclude our present investigation by observing that several hypergeometric summation theorems for Clausen’s hypergeometric function with unit argument have been deduced using our main result in an analogous manner. These new results may use in the further study of digamma function and Clausen’s hypergeometric function with unit argument.

Acknowledgment:

The authors are highly thankful to the editor and anonymous reviewers for their efforts to make this manuscript in the present form.

REFERENCES

Shpot, M.A. (2007). A massive Feynman integral and some reduction relations for Appell func-
Slater, L.J. (1966). Generalized Hypergeometric Functions, Cambridge University Press, Cam-
b ridge.
(Ellis Horwood Ltd., Chichester, U.K.), John Wiley and Sons, New York, Chichester, Brisbane
and Toronto.