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Abstract

In this paper, a comparative study between two different methods for solving nonlinear Caputo
time-fractional wave-like equations with variable coefficients is conducted. These two methods
are called the Shehu variational iteration method (SVIM) and the Shehu decomposition method
(SDM). To illustrate the efficiency and accuracy of the proposed methods, three different numerical
examples are presented. The results obtained show that the two methods are powerful and efficient
methods which both give approximations of higher accuracy and closed form solutions if existing.
However, the SVIM has an advantage over SDM that it solves the nonlinear problems without using
the Adomian polynomials. Furthermore, the SVIM enables us to overcome the difficulties arising
in identifying the general Lagrange multiplier and it may be considered as an added advantage of
this technique over the SDM.

Keywords: Nonlinear Caputo time-fractional wave-like equations; Shehu transform; Variational
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1. Introduction

Fractional differential equations are widely used in interpretation and modeling of many of realism
matters appeared in applied mathematics and physics including fluid mechanics, viscoelasticity,
chemistry, electrical circuits, diffusion, damping laws, relaxation processes, mathematical biology,
and so on (Atanackovic et al. (2016), Fitt et al. (2009), Khalouta et al. (2019b), Kilbas et al. (2006),
Lakshmikantham et al. (2008), Podlubny (1999), Vinagr et al. (2000), Zhou et al. (2017)). Recently,
many researchers have been interested in studying solutions of fractional differential equations by
using various methods, where the Adomian decomposition method (ADM) (Dhaigude et al. (2014),
El-Borai et al. (2015), Guo (2019)), variational iteration method (VIM) (Abolhasani et al .(2017),
Sontakke et al. (2019), Wu et al. (2017)), homotopy analysis method (HAM) (Atchi et al. (2017),
Das (2015), Odibat (2019)), and homotopy perturbation method (HPM) (Al-Khaled et al. (2014),
Hamdi Cherif et al. (2016), Javeed et al. (2019)), are the most popular ones that are used to solve
both fractional ordinary differential equations as well as fractional partial differential equations.

The aim of this paper is to extend the obtained results in (see Khalouta et al. (2019a)) and to solve
nonlinear Caputo time-fractional wave-like equation with variable coefficients by using two pow-
erful method called the Shehu variational iteration method (SVIM) which is the combination of the
Shehu transform method and the variational iteration method and the Shehu decomposition method
(SDM) which is the combination of the Shehu transform method and the Adomian decomposition
method and the comparison between these two methods with numerical results. The nonlinear
Caputo time-fractional wave-like equations with variable coefficients is presented as follows,

Dα
t v =

n∑
i,j=1

F1ij(X, t, v)
∂k+m

∂xki ∂x
m
j

F2ij(vxi
, vxj

) (1)

+
n∑
i=1

G1i(X, t, v)
∂p

∂xpi
G2i(vxi

) +H(X, t, v) + S(X, t),

with the initial conditions

v(X, 0) = a0(X), vt(X, 0) = a1(X), (2)

where Dα
t is the fractional derivative operator in the sense of Caputo of order α and 1 < α ≤ 2,

v = v(X, t), X = (x1, x2, ..., xn) ∈ Rn, t ≥ 0, F1ij, G1i i, j ∈ {1, 2, ..., n} are nonlinear functions
of X, t and v, F2ij, G2i i, j ∈ {1, 2, ..., n} , are nonlinear functions of derivatives of v with respect
to xi and xj i, j ∈ {1, 2, ..., n} , respectively. Also, H,S are nonlinear functions and k,m, p are
integers.

Note that, when α = 2, the equation (1) reduces to the classical wave-like equations with variable
coefficients. These types of equations are of considerable significance in various fields of applied
sciences, mathematical physics, nonlinear hydrodynamics, engineering physics, biophysics, human
movement sciences, astrophysics and plasma physics. These equations describe the evolution of
erratic motions of small particles that are immersed in fluids, fluctuations of the intensity of laser
light, velocity distributions of fluid particles in turbulent flows.
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432 A. Khalouta and A. Kadem

2. Basic Definitions and Results

In this section, we present necessary definitions and preliminary results about fractional calculus
and Shehu transform, which are used further in this paper. For more details, see Kilbas et al. (2006).

Definition 2.1.

Let f : [0, T ] −→ R be a continuous function. The left sided Riemann-Liouville fractional integral
of order α ≥ 0 is defined by

Iαf(t) =


1

Γ(α)

t∫
0

(t− ξ)α−1 f(ξ)dξ, α > 0,

f(t), α = 0,

(3)

where

Γ(α) =

∞∫
0

tα−1e−tdt, α > 0,

is the Euler gamma function.

Definition 2.2.

Let f : [0, T ] −→ R be a continous function. The left sided Caputo fractional derivative of order
α ≥ 0 is defined by

Dαf(t) =


1

Γ(n− α)

t∫
0

(t− ξ)n−α−1 f (n)(ξ)dξ, n− 1 < α < n,

f (n)(t), α = n,

(4)

where n = [α] + 1 with [α] being the integer part of α.

Definition 2.3.

The Mittag-Leffler function is defined as follows

Eα (z) =
∞∑
n=0

zn

Γ(nα + 1)
, α ∈ C, Re(α) > 0. (5)

A further generalization of (6) is given in the form

Eα,β (z) =
∞∑
n=0

zn

Γ(nα + β)
, α, β ∈ C, Re(α) > 0, Re(β) > 0. (6)

For the Riemann-Liouville fractional integral and Caputo fractional derivative, we have the follow-
ing relation

IαDαf(t) = f(t)−
n−1∑
k=0

f (k)(0+)
tk

k!
, t > 0.

3
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Remark 2.4.

In this paper, we consider the time-fractional derivative in the Caputo sense. When α ∈ R+, the
Caputo time-fractional derivative is defined by

Dα
t v(X, t) =


1

Γ(n− α)

t∫
0

(t− ξ)n−α−1 v(n)(X, ξ)dξ, n− 1 < α < n,

v(n)(X, t), α = n, n ∈ N∗.

Definition 2.5.

The Shehu transform of the function f(t) of exponential order is defined over the set of functions
(Shehu et al. (2019))

A =

{
f(t)/∃N, η1, η2 > 0, |f(t)| < N exp

(
|t|
ηj

)
, if t ∈ (−1)i × [0,∞)

}
,

by the following integral

S [f(t)] = F (s, u) =

∫ ∞
0

exp

(
−st
u

)
f(t)dt, t > 0.

Theorem 2.6.

Let n ∈ N∗ and α > 0 be such that n − 1 < α ≤ n and F (s, u) be the Shehu transform of the
function f(t), then the Shehu transform denoted by Fα(s, u) of the Caputo fractional derivative of
f(t) of order α, is given by

S [Dαf(t)] = Fα(s, u) =
sα

uα
F (s, u)−

n−1∑
k=0

( s
u

)α−(k+1) [
Dkf(t)

]
t=0

. (7)

Proof:

See Khalouta et al. (2019a). �

3. Solution of nonlinear Caputo time-fractional wave-like equations by
the Shehu variational iteration method (SVIM)

Theorem 3.1.

Consider the nonlinear Caputo time-fractional wave-like equations (1) with the initial conditions
(2). Then, by the SVIM the exact solution of Equations (1) and (2) is given as a limit of the
successive approximations vn(X, t), n = 0, 1, 2, ..., in other words

v(X, t) = lim
n−→∞

vn(X, t).

Proof:

In order to achieve our goal, we consider the following nonlinear Caputo time-fractional wave-like

4
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434 A. Khalouta and A. Kadem

equations (1) with the initial conditions (2). First we define

Nv =
n∑

i,j=1

F1ij(X, t, v)
∂k+m

∂xki ∂x
m
j

F2ij(vxi
, vxj

),

Mv =
n∑
i=1

G1i(X, t, v)
∂p

∂xpi
G2i(vxi

), (8)

Kv = H(X, t, v).

Equation (1) is written in the form

Dα
t v(X, t) = Nv(X, t) +Mv(X, t) +Kv(X, t) + S(X, t). (9)

Applying the Shehu transform on both sides of (9) and using the Theorem 2.6, we get

S [v(X, t)] =
u

s
a0(X) +

(u
s

)2
a1(X) +

uα

sα
S [S(X, t)]

+
uα

sα
S [Nv(X, t) +Mv(X, t) +Kv(X, t)] . (10)

After that, let us take the inverse Shehu transform on both sides of (10). We have

u(X, t) = L(X, t) + S−1
(
uα

sα
S [Nv(X, t) +Mv(X, t) +Kv(X, t)]

)
, (11)

where L(X, t) is a term arising from the source term and the prescribed initial conditions. Take the
first partial derivative with respect to t of Equation (11) to obtain

∂

∂t
v(X, t)− ∂

∂t
S−1

(
uα

sα
S [Nv(X, t) +Mv(X, t) +Kv(X, t)]

)
− ∂

∂t
L(X, t) = 0. (12)

According to the variational iteration method (Biazar et al. (2010)), we can construct a correct
functional as follows

vn+1(X, t) = vn(X, t)−
t∫

0

[
∂vn
∂ξ
− ∂

∂ξ
S−1

(
uα

sα
S [Nvn +Mvn +Kvn]

)
− ∂L

∂ξ

]
dξ, (13)

or

vn+1(X, t) = L(X, t) + S−1
(
uα

sα
S [Nvn(X, t) +Mvn(X, t) +Kvn(X, t)]

)
. (14)

Finally, the exact solution of Equations (1) and (2) is given as a limit of the successive approxima-
tions vn(X, t), n = 0, 1, 2, ..., in other words

v(X, t) = lim
n→∞

vn(X, t).

This completes the proof. �
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4. Solution of nonlinear Caputo time-fractional wave-like equations by
the Shehu decomposition method (SDM)

Theorem 4.1.

Consider the following nonlinear Caputo time-fractional wave-like equations (1) with the initial
conditions (2). Then, by SDM the solution of Equations (1) and (2) is given in the form of infinite
series which converges rapidly to the exact solution as follows

v(X, t) =
∞∑
n=0

vn(X, t).

Proof:

Similar to the proof of the Theorem 3.1, we have

v(X, t) = L(X, t) + S−1
(
uα

sα
S [Nv(X, t) +Mv(X, t) +Kv(X, t)]

)
. (15)

Now, we represent the solution in an infinite series form

v(X, t) =
∞∑
n=0

vn(X, t), (16)

and the nonlinear terms can be decomposed as

Nv(X, t) =
∞∑
n=0

An,Mv(X, t) =
∞∑
n=0

Bn, Kv(X, t) =
∞∑
n=0

Cn, (17)

where An, Bn and Cn are Adomian polynomials of v0, v1, v2, .., vn, and it can be calculated by
formula given below (Hosseini et al. (2012), Moradweysi et al. (2018)),

An = Bn = Cn =
1

n!

dn

dλn

[
N

(
∞∑
i=0

λivi

)]
λ=0

, n = 0, 1, 2, .... (18)

Using Equations (16) and (17), we can rewrite Equation (15) as
∞∑
n=0

vn(X, t) = L(X, t) + S−1
(
uα

sα
S

[
∞∑
n=0

An +
∞∑
n=0

Bn +
∞∑
n=0

Cn

])
. (19)

By comparing both sides of Equation (19) we have the following relation

v0(X, t) = L(X, t),

v1(X, t) = S−1
(
uα

sα
S [A0 +B0 + C0]

)
,

v2(X, t) = S−1
(
uα

sα
S [A1 +B1 + C1]

)
, (20)

v3(X, t) = S−1
(
uα

sα
S [A2 +B2 + C2]

)
,

...

6
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In general the recursive relation is given by

v0(X, t) = L(X, t), (21)

vn+1(X, t) = S−1
(
uα

sα
S [An +Bn + Cn]

)
, n ≥ 0.

Then, the solution of Equations (1) and (2) is given in the form of infinite series as follows

v(X, t) =
∞∑
n=0

vn(X, t).

This completes the proof. �

5. Illustrative examples and numerical results

In this section, we apply the SVIM and SDM to solve three examples of nonlinear Caputo time-
fractional wave-like equations with variable coefficients and then compare our approximate solu-
tions with the exact solutions.

Example 5.1.

Consider the 2-dimensional nonlinear Caputo time-fractional wave-like equation with variable co-
efficients

Dα
t v =

∂2

∂x∂y
(vxxvyy)−

∂2

∂x∂y
(xyvxvy)− v, t > 0, 1 < α ≤ 2, (22)

with the initial conditions

v(x, y, 0) = exy, vt(x, y, 0) = exy, (x, y) ∈ R2. (23)

5.1. Application of the SVIM

By applying the steps involved in the SVIM as presented in Section 3 to Equations (22) and (23),
we obtain the iteration formula as follows

vn+1(x, y, t) = exy + texy + S−1
(
uα

sα
S
[
∂2

∂x∂y
(vnxxvnyy) −

∂2

∂x∂y
(xyvnxvny)− vn

])
,

and

v0(x, y, t) = (1 + t) exy,

v1(x, y, t) =

(
1 + t− tα

Γ(α + 1)
− tα+1

Γ(α + 2)

)
exy,

v2(x, y, t) =

(
1 + t− tα

Γ(α + 1)
− tα+1

Γ(α + 2)
+

t2α

Γ(2α + 1)
+

t2α+1

Γ(2α + 2)

)
exy,

...

7
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Then, the general term in successive approximation is given by

vn(x, y, t) =
n∑
k=0

(
(−1)ktkα

Γ(kα + 1)
+

(−1)ktkα+1

Γ(kα + 2)

)
exy.

Finally, the exact solution of Equations (22) and (23) is given by

v(x, y, t) = lim
n→∞

vn(x, y, t) = lim
n→∞

n∑
k=0

(
(−1)ktkα

Γ(kα + 1)
+

(−1)ktkα+1

Γ(kα + 2)

)
exy

= (Eα(−tα) + tEα,2(−tα)) exy. (24)

5.2. Application of the SDM

By applying the steps involved in the SDM as presented in Section 4 to Equations (22) and (23),
we have
∞∑
n=0

vn(x, y, t) = exy + texy + S−1
(
uα

sα
S

[
∂2

∂x∂y

(
∞∑
n=0

An

)
− ∂2

∂x∂y

(
xy

∞∑
n=0

Bn

)
−
∞∑
n=0

un

])
,

where vxxvyy =
∞∑
n=0

An, vxvy =
∞∑
n=0

Bn, are the Adomian polynomials that represents the nonlinear

terms, and

v0(x, y, t) = (1 + t)exy,

v1(x, y, t) = −
(

tα

Γ(α + 1)
+

tα+1

Γ(α + 2)

)
exy,

v2(x, y, t) =

(
t2α

Γ(2α + 1)
+

t2α+1

Γ(2α + 2)

)
exy,

...

So, the solution of Equations (22) and (23) can be expressed by

v(x, y, t) =

(
1 + t− tα

Γ(α + 1)
− tα+1

Γ(α + 2)
+

t2α

Γ(2α + 1)
+

t2α+1

Γ(2α + 2)
+ ...

)
exy

= (Eα(−tα) + tEα,2(−tα)) exy, (25)

where Eα(−tα)exy and Eα,2(−tα) are the Mittag-Leffler functions defined by Equations (5) and
(6).

In the special case α = 2, (24) and (25) becomes

v(x, y, t) =
(
E2(−t2) + tE2,2(−t2)

)
exy = (cos t+ sin t)exy.

The solution is the same as that obtained by the FRDTM (Khalouta et al. (2019c)) and FRPSM
(Khalouta et al. (2020)).

8
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Figure 1. (a) The comparison of the exact solution and the approximate solutions by SVIM and SDM, when α = 2 and
x = y = 0.5, (b) The behavior of the exact solution and the approximate solutions by SVIM and SDM for
different values of α when x = y = 0.5.

Table 1. The absolute errors for differences between the exact solution and the approximate solutions by SVIM and
SDM for Example 5.1 when n = 3,m = 4 and α = 2.

|vexact − vSV IM | |vexact − vSDM | |vexact − vSV IM | |vexact − vSDM |
t/x, y 0.5 0.5 0.7 0.7

0.1 3.2196× 10−13 3.2196× 10−13 4.0929× 10−13 4.0929× 10−13

0.3 2.1569× 10−9 2.1569× 10−9 2.7420× 10−9 2.7420× 10−9

0.5 1.3095× 10−7 1.3095× 10−7 1.6647× 10−7 1.6647× 10−7

0.7 1.9680× 10−6 1.9680× 10−6 2.5019× 10−6 2.5019× 10−6

0.9 1.4947× 10−5 1.4947× 10−5 1.9001× 10−5 1.9001× 10−5

Example 5.2.

Consider the following nonlinear Caputo time-fractional wave-like equation with variable coeffi-
cients

Dα
t v = v2

∂2

∂x2
(vxvxxvxxx) + v2x

∂2

∂x2
(v3xx)− 18v5 + v, t > 0, 1 < α ≤ 2, (26)

with the initial conditions

v(x, 0) = ex, vt(x, 0) = ex, x ∈ ]0, 1[ . (27)

9
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5.3. Application of the SVIM

By applying the steps involved in the SVIM as presented in Section 3 to Equations (26) and (27),
we obtain the iteration formula as follows

vn+1(x, t) = ex + tex + S−1
(
uα

sα
S
[
v2n

∂2

∂x2
(vnxvnxxvnxxx) +v2nx

∂2

∂x2
(v3nxx)− 18v5n + vn

])
,

and

v0(x, t) = (1 + t) ex,

v1(x, t) =

(
1 + t+

tα

Γ(α + 1)
+

tα+1

Γ(α + 2)

)
ex,

v2(x, t) =

(
1 + t+

tα

Γ(α + 1)
+

tα+1

Γ(α + 2)
+

t2α

Γ(2α + 1)
+

t2α+1

Γ(2α + 2)

)
ex,

...

Then, the general term in successive approximation is given by

vn(x, t) =
n∑
k=0

(
tkα

Γ(kα + 1)
+

tkα+1

Γ(kα + 2)

)
ex.

Finally, the exact solution of Equations (26) and (27) is given by

v(x, t) = lim
n→∞

vn(x, t) =
∞∑
k=0

(
tkα

Γ(kα + 1)
+

tkα+1

Γ(kα + 2)

)
ex

= (Eα(tα) + tEα,2(t
α)) ex. (28)

5.4. Application of the SDM

By applying the steps involved in the SDM as presented in Section 4 to Equations (26) and (27),
we have

∞∑
n=0

vn(x, t) = ex + tex + S−1
(
uα

sα
S

[
∞∑
n=0

An +
∞∑
n=0

Bn − 18
∞∑
n=0

Cn +
∞∑
n=0

un

])
,

where v2
∂2

∂x2
(vxvxxvxxx) =

∞∑
n=0

An, v
2
x

∂2

∂x2
(v3xx) =

∞∑
n=0

Bn and v5 =
∞∑
n=0

Cn, are the Adomian

polynomials that represents the nonlinear terms, and

v0(x, t) = (1 + t) ex,

v1(x, t) =

(
tα

Γ(α + 1)
+

tα+1

Γ(α + 2)

)
ex,

v2(x, t) =

(
t2α

Γ(2α + 1)
+

t2α+1

Γ(2α + 2)

)
ex,

...
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So, the solution of Equations (26) and (27) can be expressed by

v(x, t) =

(
1 + t+

tα

Γ(α + 1)
+

tα+1

Γ(α + 2)
+

t2α

Γ(2α + 1)
+

t2α+1

Γ(2α + 2)
+ ...

)
ex

= (Eα(tα) + tEα,2(t
α)) ex, (29)

where Eα(tα) and Eα,2(tα) are the Mittag-Leffler functions, defined by Equations (5) and (6).

In the special case α = 2, (28) and (29) becomes

v(x, t) =
(
E2(t

2) + tE2,2(t
2)
)
ex

= ex+t.

The solution is the same as that obtained by the FRDTM (Khalouta et al. (2019c)) and FRPSM
(Khalouta et al. (2020)).

0 0.5 1

t

1.5

2

2.5

3

3.5

4

4.5

v(
x,

t)

(a)

Exact solution

3th-order by SVIM
4-term by SDM

0 0.5 1

t

1.5

2

2.5

3

3.5

4

4.5

5

v(
x,

t)

(b)

Exact solution
α=2
α=1.95
α=1.8
α=1.7

Figure 2. (a) The comparison of the exact solution and the approximate solutions by SVIM and SDM, when α = 2
and x = 0.5, (b) The behavior of the exact solution and the approximate solutions by SVIM and SDM for
different values of α when x = 0.5.

Table 2. The absolute errors for differences between the exact solution and the approximate solutions by SVIM and
SDM for Example 5.2 when n = 3,m = 4 and α = 2.

|vexact − vSV IM | |vexact − vSDM | |vexact − vSV IM | |vexact − vSDM |
t/x 0.5 0.5 0.7 0.7

0.1 4.1350× 10−13 4.1350× 10−13 5.0505× 10−13 5.0505× 10−13

0.3 2.7750× 10−9 2.7750× 10−9 3.3894× 10−9 3.3894× 10−9

0.5 1.6907× 10−7 1.6907× 10−7 2.0650× 10−7 2.0650× 10−7

0.7 2.5543× 10−6 2.5543× 10−6 3.1199× 10−6 3.1199× 10−6

0.9 1.9535× 10−5 1.9535× 10−5 2.3860× 10−5 2.3860× 10−5
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Example 5.3.

Consider the following one dimensional nonlinear Caputo time-fractional wave-like equation with
variable coefficients

Dα
t v = x2

∂

∂x
(vxvxx)− x2(vxx)2 − v, t > 0, 1 < α ≤ 2, (30)

with the initial conditions

v(x, 0) = 0, vt(x, 0) = x2, x ∈ ]0, 1[ . (31)

5.5. Application of the SVIM

By applying the steps involved in the SVIM as presented in Section 3 to Equations (30) and (31),
we obtain the iteration formula as follows

vn+1(x, t) = tx2 + S−1
(
uα

sα
S
[
x2

∂

∂x
(vnxvnxx)− x2(vnxx)2 − vn

])
,

and

v0(x, t) = tx2,

v1(x, t) =

(
t− tα+1

Γ(α + 2)

)
x2,

v2(x, t) =

(
t− tα+1

Γ(α + 2)
+

t2α+1

Γ(2α + 2)

)
x2,

...

Then, the general term in successive approximation is given by

vn(x, t) = x2

(
n∑
k=0

(−1)k tkα+1

Γ(kα + 2)

)
.

Finally, the exact solution of Equations (30) and (31) is given by

v(x, t) = lim
n→∞

vn(x, t) = x2

(
∞∑
i=0

(−1)k tkα+1

Γ(kα + 2)

)
= x2 (tEα,2(−tα)) . (32)

5.6. Application of the SDM

By applying the steps involved in the SDM as presented in Section 4 to Equations (30) and (31),
we have

∞∑
n=0

vn(x, t) = tx2 + S−1
(
uα

sα
S

[
x2

∂

∂x

∞∑
n=0

An − x2
∞∑
n=0

Bn −
∞∑
n=0

un

])
,

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 15 [], Iss. 1, Art. 24

https://digitalcommons.pvamu.edu/aam/vol15/iss1/24



442 A. Khalouta and A. Kadem

where uxuxx =
∞∑
n=0

An and (uxx)
2 =

∞∑
n=0

Bn, are the Adomian polynomials that represents the

nonlinear terms, and

v0(x, t) = tx2,

v1(x, t) = − tα+1

Γ(α + 2)
x2,

v2(x, t) =
t2α+1

Γ(2α + 2)
x2,

...

So, the solution of Equations (30) and (31) can be expressed by

v(x, t) = x2
(
t− tα+1

Γ(α + 2)
+

t2α+1

Γ(2α + 2)
− t3α+1

Γ(3α + 2)
+ ...

)
= x2 (tEα,2(−tα)) , (33)

where Eα,2(−tα) is the Mittag-Leffler function, defined by Equation (5).

In the special case, α = 2, Equations (32) and (33) become

v(x, t) = x2
(
tE2,2(−t2)

)
= x2 sin t.

The solution is the same as that obtained by the the FRDTM (Khalouta et al. (2019c)) and FRPSM
(Khalouta et al. (2020)).
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Figure 3. (a) The comparison of the exact solution and the approximate solutions by SVIM and SDM, when α = 2
and x = 0.5, (b) The behavior of the exact solution and the approximate solutions by SVIM and SDM for
different values of α when x = 0.5.
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Table 3. The absolute errors for differences between the exact solution and the approximate solutions by SVIM and
SDM for Example 5.3 when n = 3,m = 4 and α = 2.

|vexact − vSV IM | |vexact − vSDM | |vexact − vSV IM | |vexact − vSDM |
t/x 0.5 0.5 0.7 0.7

0.1 6.8887× 10−16 6.8887× 10−16 1.3502× 10−15 1.3502× 10−15

0.3 1.3549× 10−11 1.3549× 10−11 2.6556× 10−11 2.6556× 10−11

0.5 1.3425× 10−9 1.3425× 10−9 2.6313× 10−9 2.6313× 10−9

0.7 2.7677× 10−8 2.7677× 10−8 5.4248× 10−8 5.4248× 10−8

0.9 2.6495× 10−7 2.6495× 10−7 5.1930× 10−7 5.1930× 10−7

6. Numerical results and discussion

Figures 1, 2 and 3(a) represent the comparison of the 3th order approximate solution obtained by
SVIM and the 4-term approximate solution obtained by SDM and the exact solution at α = 2 when
x = y = 0.5 for Example 5.1 and x = 0.5 for Examples 5.2 and 5.3. The numerical results show
the SVIM and SDM are highly accurate. Figure 3(b) represents the behavior of the exact solutions
and the 3th order approximate solution by SVIM and the 4−term approximate solution by SDM at
α = 1.7, 1.8, 1.95, 2. These results affirm that when α approaches 2, our results approach the exact
solutions. In Tables 1, 2 and 3, we compute the absolute errors for differences between the exact
solutions and the 3th order approximate solution by SVIM and the 4−term approximate solution
by SDM at α = 2. The absolute errors obtained by SVIM are the same results obtained by SDM.

7. Conclusion

In this paper, we have compared between the Shehu variational iteration method (SVIM) and the
Shehu decomposition method (SDM) for solving nonlinear Caputo time-fractional wave-like equa-
tions with variable coefficients. These two methods are powerful and efficient methods that both
give approximations of higher accuracy and closed form solutions. The comparison between the
third iteration solution of the SVIM and fourth terms of the SDM constitutes an excellent agree-
ment. However, the SVIM has an advantage over SDM that it solves the nonlinear problems with-
out using the Adomian polynomials. The SVIM enables us to overcome the difficulties arising in
identifying the general Lagrange multiplier and it may be considered as an added advantage of this
technique over the decomposition method. It is concluded that these methods are very powerful
mathematical tool for solving different kinds nonlinear fractional differential equations.
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