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ABSTRACT 

Game-Theory Application in Co-Resident Security of Function-As-A-Service Cloud 

Environments 

(August 2024) 

Damon L. Alsup, B.A., University of Houston; B.S., M.S., Prairie View A&M University; 

Chair of Advisory Committee: Dr. Suxia Cui 

 

   The cloud is a shared computing environment with a value beyond the sum of its 

parts. The number of customers that data-centers can serve, comparative advantages, 

and the ability to manage depreciation allow computing at economies of scale. The 

cloud allows for every element of factors of production to translate into goods and 

services. This shared environment spans across a vast clientele, introducing self-

sustaining security risks. The vulnerabilities extend beyond the traditional gaps in 

computer security, through exploitation of the cloud’s efficiency structures. 

   Shared computing resources enable the existence of co-resident attack vectors on 

cloud platforms. This study considered the result of modeling co-resident threats in 

simulation at the boundaries of game-theory using real-world workloads, scalable 

hardware specifications, and recognized attack parameters. Both attacker and benign 

user variables were adapted to an extended-time and geographically defined game-

space and the results of the co-resident risk determined on an ecological scale. 
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   This study sought to determine the applicability of this technique to emergent 

cloud structures. The current cloud trend is toward finer granularity programming of 

applications, where decoupling of data and algorithms into developer customized 

programming is ceded to by monolithic applications. This phasing into micro-service 

based limited purpose coding is called Functions-as-a-Service (FaaS). Supporting this 

feature is provider management, configuration, and patching which anchors FaaS in a 

serverless interface. 

   This cloud evolution of code, storage, and presentation into distinct sectors has 

altered the security environment into discrete sectors by reducing state, ephemeral 

hosting, and transient runtimes to enable the sought after economic efficiency. Where 

this increased the cloud dynamism, it also redistributed the cost to benefit analysis. The 

effective implementation of the game-theory principles required validation on this 

economic structure. 

  Index Terms – Cloud computing, data leakage, game-theory, mutli-tenancy, security 
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CHAPTER I 

INTRODUCTION 

1.1  Economics of Cloud Computing 

   The computing cloud, ‘the cloud,’ is an economic model designed with the 

objective of providing information technology goods and services. 1 The cloud may 

serve academic, governmental, or private interests. With a widespread provider and 

consumer base, the cloud is a modern manifestation of managing scarcity in the interest 

of generating wealth [3]. The cloud is an advance and challenge, no less significant than 

the shift from mercantilism and agrarian economies to market and industrial models. 

  1.1.1)  Factors of Production: The cloud provides widespread modern computational 

power by centering advanced information technology with maintenance, expertise, and 

logistic support. Networked distribution and data processing were tailored to specific 

requirements and packaging for distribution to cloud customers. These may be physical 

resources, such as power and network connectivity, or abstract, such as data structures. 

The cloud is modular, expansive, flexible, and has a high capacity that is sufficient to 

provide an economy of scale. The cloud provides this through the management of the 

factors of production: land, labor, and capital. 

  1.1.1.1)  Land - The data-center: In the classical sense, land is the natural resources 

and geographical features used in production. Drawing from its characteristic  

___________________ 
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Version 
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of inexhaustibility, the cloud economic model considers the datacenter, its networking, 

and power sources.  Emerging from and taking inspiration from grid computing, the 

data-center is designed as a collective housing of commodity-grade servers. This 

integration is more cohesive than peer-to-peer networks yet less monolithic than a 

mainframe configuration. The cloud business model is designed to market to the widest 

consumer base with the latitude to address the greatest range of requirements. It must 

do so in a fashion that meets the on-demand characteristic, with an agreed upon quality 

of service. 

   1.1.1.2)  Labor - Technical and engineering staff:  While surely an impressive 

achievement with multiple data-centers and hundreds of thousands of networked 

servers, these alone are not sufficient to achieve computing power greater than the sum 

of the parts. For the cloud to achieve that synergy, the cloud data-center requires the 

same factor that modernized agrarian economies: division of labor [4]. Labor costs 

consider the hierarchy of competencies, licenses, and management inherent in complex 

enterprises. What the cloud service provider gets in return is effective optimizations, 

longevity of tools and equipment, and sustainable task to purpose. 

   1.1.1.3)  Capital – Virtualization: Capital outlays include payment for the load to 

the power grid, traffic on the leased backbone, and debts for infrastructure. Capital is 

also ‘those durable produced goods that are in turn used as productive inputs for 

further production’ [5]. More informally, capital is ‘the stuff that makes stuff.’ 

  Central to the economy of the cloud is virtualization technology, a combination of 

hardware architecture features and software structures adapted to maximize the 
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efficiency and utilization of data-center machines. Virtualization provides a multi-user 

platform by allowing the abstraction of resources coordinated with execution 

environments hosted on different physical machines (PMs). Through virtualization, the 

cloud can achieve scalability, which is an essential element of the ‘pay-as-you-go’ model. 

Taking advantage of the high speed of processors, multi-threading, memory 

management, and other lower-level architectures, an abstraction of the machine and 

operating system share time and space with other abstractions. 

  1.1.2)  Services: Cloud computing refers to both the applications delivered as services 

over the Internet and the hardware and systems software in the data-centers that 

provide those services. The distinctions that separate any class of those services are 

aligned with the hardware and software that provide those services. Traditionally, these 

distinctions are separated into: 

   1.1.2.1)  Infrastructure-as-a-Service (IaaS): IaaS requires the greatest upkeep from 

the customer, which is essentially a physical bare-metal or virtual machine. It requires 

the most system configuration, networking, and storage management. An example is 

Amazon EC2, which looks much like physical hardware, and users can control nearly the 

entire software stack from the kernel upwards. 

   1.1.2.2)  Platform-as-a-Service (PaaS): PaaS reduces the necessary information 

technology tasks at some cost to the consumer. The focus of this model is providing a 

configured host on which those data-center customers can load commercial or in-house 

applications. The PaaS model forms the basis for a wide range of legacy and 



          4 

 

contemporary subsets, including Backend-as-a-Service (BaaS), which will be addressed 

in the second half of this work. 

   1.1.2.3)  Software-as-a-Service (SaaS): SaaS providers abstract away the 

requirement for the customer to engage in the maintenance of IaaS or PaaS. In this 

model, packaged applications are presented for the consumer in the customized front-

end. Although these may mirror non-cloud environments [6], they will likely be targeted 

to a different patronage. 

   Each of these services has an “on-demand” quality at different monetary scales, 

governed by how the provider adopts the three economic factors. They are developed 

from various levels of interconnectivity, and, in almost all cases, the services are offered 

in some form of abstraction. 

  1.1.3) The Entrepreneurial Spirit: The data-center is then capable of offering anything 

as a service (XaaS) targeted at both household consumers and commercial entities. 

Intellectual property, financial records, and industry operation software reside in the 

cloud, not just at the commercial data-center. More than the aforementioned services, 

the merger between the CSP and the user provides conditions for goods. These are 

developed from the final economic factor of production versions of the final factor, ‘the 

entrepreneurial spirit’ [7]. 

   1.1.3.1)  Locally Shared Entrepreneurship: Entrepreneurship, that is, the 

exploitation of previously non-commercialized knowledge and ideas) is essential to a 

regional economic system [8]. The exploitation can be either cooperative or 

competitive, and the ideas being applied may be either innovative or familiar. More 
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generally, commercialization must only present a novel utility to an agent. This factor 

produces an ecosystem with its own life cycles and dynamics. 

  Unfortunately, the entrepreneurial spirit can elicit selfish conduct. The virtualization 

methods which are meant to be shared are then subject to a user’s control. In other 

words, the capital expenditures that were intended to become a good or service are 

instead detracting from each other. This contention need not be a directly aggressive 

act. However, each party may be inclined to disrupt such an effort or engage in their 

own efforts to overuse the platform. These objectives, regardless of the number of 

competing users, still occur in the self-contained vitalized environment. 

   The shared computing environment, which is dynamic, economically 

advantageous, and accessible, created conditions ripe for resource competition.  

Although these may not be directly in opposition, each cloud user is serving their own 

best interest. Where possible, users will seek to maximize return on investment through 

programmatic means that seize processor time, memory channel exploits, or network 

access. They will employ peremptory programmatic methods, take advantage of cloud 

service provider (CSP) policy, and deploy loads on resources that may have designs on 

them by another user. 

   An analog to this can be found in two drivers approaching a malfunctioning traffic 

light at right angles (see Fig. 1.1). Either may stop while letting the other one pass, 

depending on their sense of what the other will do. Of course, neither may stop, 

depending on their sense of urgency. Or they both may stop, apprehensive as to the 

other driver’s caution. 
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  As a virtualized system, users share time and space on cloud resources. Without 

having a direct conflict, like the drivers at the intersection, they will be seeking to 

maximize their payoffs through expeditious execution of their own code. If an execution 

is too selfish, it will result in a mutually destructive outcome.

 

Fig. 1.1: A game theory representation of two drivers meeting at an uncontrolled 
intersection from perpendicular directions. The drivers assume the role of players acting 
in their best interests, but not necessarily in opposition. The driver strategies determine 
the outcome for the other, their payoffs determined by the matrix. Payoff’s for the N-S 
driver and E-W driver are an ordered pair, in respective order. The players, strategies, 
and payoffs form the essential elements of an uncontrolled intersection game. 
 
   1.1.3.2)  Entrepreneurs as Players: The uncontrolled intersection example above is 

not the only parallel or similarity to circumstances that arise in the cloud. It is, however, 

an appropriate model to adopt agents in the cloud as players in a game, perhaps 

requiring the same branch target buffer, attempting to make use of speculative 

instruction hardware, or in the queue at a fat-tree network hub. Game theory can be 
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applied to many aspects of the cloud to include power usage, networking, scheduling, 

and security. 

 A discussion of game theory in a broad sense can be found in Appendix A. Additional 

development is included for other cloud computing parallels. These may be mixed 

strategy games (see Appendix A.11.) or extended form (see Appendix A.1.3.) games. 

   Models may be cooperative or competitive. However, each considers an 

uncontrolled localized environment. For instance, one may consider the circumstances 

where not just one intersection with a broken traffic light models the access to a host 

computer, but the case of an entire neighborhood without traffic lights. See the 

development of this model in Appendix A.5. The result would produce queuing issues, a 

traffic wave, and cyclical congestion in the network. Such cyclical patterns will emerge 

throughout the development of the game-theory applied in Chapter 2. Within these 

cyclical models, pockets of stability can emerge. 

1.2.  Study Threat Model 

   The ability to generate wealth makes the cloud an attractive target, and its broad 

network footprint presents a wide attack surface. Data in transition risks compromise 

where any breach presents an exploitable entry point. While the cloud evolves, its own 

dynamism sustains competing interests. The threat evaluated in this study emerges 

from the co-residence of these interests in the virtualized cloud environment. 

  1.2.1)  Co-Resident Threats: Exploitation of shared resources emerges from the 

system features that provide the ability to affect co-resident users. These may entirely 
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obstruct their capabilities or do so only minimally.  Effects may be asymmetric or 

perhaps place the offending party at an equal risk. 

   1.2.1.1)  Denial-of-Service (DoS): A denial of service attack disallows a co-resident 

user the ability to utilize the cloud environment. Sophisticated manipulation of the 

virtualization software through user-available controls can be adapted to limit the ability 

of other users to execute their programs [9]. Generally a resource heavy attack, DoS 

may entirely consume the attacker’s assets. 

   1.2.1.2)  Preemption:  Nuanced interaction with the virtualization management 

software provides a means to acquire computing resources and hold onto them, 

delaying the execution of co-resident users. These may be billed or unbilled executions, 

nor may it be possible for the affected user to ascertain the preemption [10]. A more 

subtle implementation than the DoS attack, preemption cheats the CSP as well. 

   1.2.1.3)  Covert Side-Channels:  A side-channel is established through unintended 

signal leakage, allowing for the exchange of information without the proper awareness 

of the CSP. This may be done to avoid billing, clandestine communication, or as a lead-in 

to an advanced persistent threat. These are generally attained through some hardware 

manipulation [11] and archive varying levels of bandwidth. 

  1.2.2)  Co-Tenant Data Leakage:  The ability to infer information or to outright steal 

information from a co-tenant user has been a continuous concern for CSPs and users. 

An unforeseen algorithmic combination, system vulnerability, or hardware features are 

all potential gaps that might be exploited. A more hostile version of the side-channel 

attack, the co-tenant data leakage, presents a particular threat to cloud users. 
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   1.2.2.1)  Leakage Objectives:  The objective of the attacker is to infer data through 

manipulation of the virtualized environment. The ability to do so in a surreptitious 

manner can catch the victim entirely unaware that they have been affected. The 

attacker may be seeking a cryptographic key, raw data, or process information. Because 

the victim user may be entirely dependent on the cloud for their business model, the 

loss of this data can be an existential threat. What data obtained either singularly or 

over an extended period of time has been shown to depend on the sophistication of the 

attack [12]. 

   1.2.2.2)  Excluded Scope:  In modern cloud systems, many attacks have been 

thoroughly explored. These may be virus or Trojan-type software intrusions, which have 

existed for decades before the cloud and are not a focus of the study. Those co-resident 

threats which are listed in Subsection 1.2.1 are similarly not considered. Isolation 

escapes from neither the traditional cloud virtual machines nor the containerized 

virtualization in Chapter F is considered. These topics are considered in other works. 

1.3  Contributions 

   This study evaluated the ability of game-theory to model mitigation strategies for 

co-tenant data leakages. The ability to extract scoring and utility in traditional virtual 

machine environments is conducted in simulation as a method of providing 

complements to the strategic and player components of game-theory. The influence of 

game-theory on the cloud evolution to the serverless model is explored and addressed 

in its technical aspects. Finally, an examination of whether the strategic component of 

game-theory is present in modern user-programmed platforms. This is conducted with 
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projected high-use programmatic algorithms in prospective high-value/high-risk 

applications.  
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CHAPTER II 

LITERATURE REVIEW 

2.1  The Tension of Cloud Virtualization: 

   Virtualization is the factor that allows the cloud economy. The data-center hosts 

have capabilities beyond allowing a single user execution and can share resources in 

such a way that they provide multiple users the illusion of being the only one on the 

machine. With roots dating back to the 1960s, the development of virtualization has 

existed on large-scale mainframes and can now be achieved on small-scale 

microprocessors [13]. In the cloud economy, virtual machines (VMs) are the "stuff that 

makes stuff." 

   Virtualization can take many forms and has been implemented in single machine 

and cluster formats. However, it is the shared characteristics that exploit the hardware 

and software optimizations that open the risk to cloud users. So, while allowing for the 

efficient use of data-center resources, virtualization gives rise to conflicts, which can be 

more antagonistic than those arising at a traffic intersection. 

  2.2)  Virtual Machines: The primary means of exploiting the high performance of 

modern networked servers in multitenant environments is the virtual machine (VM). 

The ultimate goal of VMs has been to provide the individual user with the appearance of 

being the sole operator with isolation, native utility, and a guest operating system [14]. 

This is achieved through several architectural elements. 
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  2.2.1)  Central Processor Unit Sharing: Modern central processing units (CPU) are 

multi-core and multi-threading. This allows not only the distribution of workloads but 

also the multi-processing/multi-tasking for different operational, functional, and 

administrative tasks. This capacity can be divided up into space and time between 

several users with varying degrees of effects on performance [15]. Core level and CPU 

level sharing are managed by the hypervisor or a virtual machine manager (VMM). Along 

with branch predictors, pipelining, memory addressing, and other components [16], the 

CPU can process multiple guest machines concurrently. 

  2.2.2)  Memory Sharing: The memory architecture of modern computers is arranged 

into multiple levels to provide a high-capacity channel for digital information. This is 

usually accomplished in three levels, L1 through L3 [17]. This hierarchy provides 

proximity to the core for data and instructions that can be accessed at a rate on the 

same order that the CPU can process them. This allows larger capacity storage for 

multiple users that might be three orders of magnitude slower in data retrieval time 

[18].  This memory hierarchy has a cached structure which is based on locality principles 

[19]: 

•  Temporal Locality: Reuse of specific data within a small-time frame. In other 

words, if some piece of data or instructions is used by a program, it will likely be used 

again within a shorter period of time than it would take to retrieve it from a different level 

of the memory hierarchy. 
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•  Spatial Locality: The use of data objects within storage locations that are close 

to each other. In this case, it is likely that programmatic and data elements are grouped 

sufficiently that gathering adjacent information will save time in future calls. 

  Various methods of prioritizing access affect each level of the cache hierarchy [20]. 

These are built on a model of set associative addressing [21]. Additional algorithms 

based on pre-fetching [22] and memory control [23] have been implemented to 

optimize the access speed and utility of the cache. In keeping with the economic 

impetus for cloud development, memory optimization will remain a feature in systems 

due to the large expense of greater capacity closer to the CPU. 

  2.2.3)  Power Sharing: A second power source may be an added feature on some 

servers. However, it is generally a redundancy measure. The cores and memory of the 

machine will be fed from the same source, cooled from the same heat sink 

arrangement, and operated under the same distribution network [24]. Sensing modules 

in a system monitor and adjust the flow as necessary on some architectures.  This 

protects the system and can, like other features, affect the execution of programs. 

  2.2.4)  Virtual Machine Coordination: The coordinating unit of VMs is the cloud 

hypervisor. The hypervisor, or virtual machine manager (VMM), coordinates VM 

placement and life cycle. A primary example of this is Xen [25], although many others 

exist [26]. The cloud is a multi-tenant environment of hosts, networks, and data storage 

that requires consideration for security at the coordination level [27]. Although the 

hypervisor can become an attack target on its own [28], it will not be the primary focus 

of this study. 
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2.3  Cloud Threats 

  Like other systems with multiple clients, the cloud is subject to attacks from hackers 

and other malicious users. Some of these are the malicious effects introduced by 

replicating code (trojans, viruses, worms) carried over from legacy systems [29]. Also, 

the interactive nature of the cloud leaves it vulnerable to directed vectors [30]. These 

have been studied in great detail and remain topics of considerable industry activity, 

sometimes with different implications than traditional vectors [31]. 

   The Open Web Application Security Project (OWASP) acts as a recognized advocate 

for industry security. The OWASP Top 10 is a standard awareness document for 

developers and web application security. It represents a broad consensus about the 

most critical security risks to web applications. Periodically, the most significant threats 

are publicized as a touchstone for the expansion of threat awareness. They are listed in 

Table 2.1 and are further described in Appendix B.1. 

TABLE 2.1 
THE OWASP TOP 10 WEB APPLICATION SECURITY RISKS. THE OPEN WEB APPLICATION 

SECURITY PROJECT (OWASP) PUBLISHES THE GREATEST THREATS TO WEB APPLICATIONS 
EVERY TWO YEARS. THIS IS THE LIST HERE IS DESCRIBED IN FURTHER DETAIL IN 

APPENDIX B.1. 
Number Threat 

1 Broken Access Control 
2 Cryptographic Failures 
3 Injection 
4 Insecure Design 
5 Security Misconfiguration 
6 Vulnerable and Outdated Components 
7 Identification and Authentication Failures 
8 Software and Data Integrity Failures 
9 Security Logging and Monitoring Failures 

10 Server-Side Request Forgery 
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  2.3.1)  The Co-Resident Risk: In addition to traditional attacks, side-channels emerge 

due to virtual machines sharing a host. Multiple users trading the processing resources 

introduce these risks. The danger of collocating such virtualization was recognized even 

as it was being implemented [32, 14]. Various attacks were theorized and determined to 

be realizable through low-level system operations [33] and atomic timing of the memory 

[34]. 

   Perhaps the most simple [35] of these is the ‘Prime and Probe’ attack. Through a 

series of memory loads and reads, an attacker can infer the region of the last-level cache 

(LLC) being utilized by the victim. This attack takes place in three steps: 

•  (1) Prime – the attacker fills one or more cache sets by reading from a specific 

memory region, ideally one which they have control of and exact knowledge; 

•  2) Idle – the attacker waits for a period of time which allows the cache to be 

used by other tenants, specifically a target which they are wish to determine co-residence; 

•  (3) Probe – the attacker refills the cache sets by reading from the same memory 

region. 

  During the third stage, the attacker times the memory access and load time. Activity 

in the cache by the target will likely cause eviction of the attacker’s cache entries. 

Compared to unaccessed cache, the read time in the last step will be higher. This will 

alert the attacker as to which region of memory the victim is using. Such an attack can 

be used to force memory relocation [11] and leak cryptographic information when 

incorporated with other attacks [36]. 
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  2.3.2)  Side-Channel Communication: Through trace and timing attacks, hackers may 

infer knowledge of the victim through collateral signaling/emissions. Beyond the coarse-

grained prime-and-probe attack, higher-resolution data leakage can also take advantage 

of memory operations. These generally occur in conjunction with other architectural 

features [37, 38]. Power monitoring [39], electromagnetic attack, acoustic cryptanalysis 

[40], and data-bus locking [23] enabled denial of service and risk exposure of encryption 

keys. These occur, in theory or practice, in a variety of methods and are difficult to avert 

[12]. 

  2.3.3)  Advanced and Coordinated Co-Resident Threats: Although it requires specific 

conditions [36], a potentially devastating attack is flush and reload.  In this shared cache 

attack, ElGamel and AES key can be exposed with effective noise reduction.  The attack 

happens in three steps: 

•  (1) Flush - The attacker removes data containing instructions located in a 

memory page; 

•  (2) Idle – the attacker waits for a period of time which allows the cache to be 

used by other tenants that they are able to determine co-residence; 

•  (3) Reload - The attacker times the reload of the same data into the processor. 

  An attacker can infer from a faster reload that this instruction was executed from the 

cache by the victim. Such an attack is problematic as it requires cohesion from the entire 

cache hierarchy and free reign of clflush instruction. System-level instructions are 

essential to the applicability of these kinds of attacks [33]. 

2.4  Co-Resident Threat Mitigation 
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  The very characteristic that made the cloud attractive is economic computation, 

which requires a degree of risk from co-tenancy. Hardware changes that would 

eliminate the collocation attacks cannot be implemented immediately [41], are costly 

[42, 43], and difficult to implement. The alternative is to eliminate the co-residence 

necessary for a side-channel attack [44]. 

   Such solutions must balance with the other objectives, such as task scheduling 

[45], energy consumption [46], load balancing [47], and consolidation [48]. Identifying 

and attempting to mitigate a potential attack relies on various stochastic methods and 

balancing schema that quantify characteristic outcomes associated with benign or 

hostile behavior [41, 49], environmental opportunity, or identity [50]. 

  2.4.1)  Hardware Mitigation: In modern computer systems, user processes are 

isolated by the operating system and the hardware. Additionally, in a cloud scenario, it is 

crucial that the hypervisor isolates tenants from other tenants that are co-located on the 

same physical machine [51]. However, the hypervisor does not protect tenants against 

the cloud provider supplying the operating system and hardware. 

   Intel SGX provides a mechanism that addresses this scenario [52]. It aims to 

protect user-level software from attacks from other processes, the operating system, 

and even physical attackers. This provides a trusted execution environment for both 

monolithic and distributed applications. 

   It was demonstrated in previous research that fine-grained software-based side-

channel attacks can form on an SGX enclave targeting co-located enclaves [53]. This was 

malware running on real SGX hardware, abusing SGX protection features to conceal 
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itself. The attack was significant to this research both in a native environment and across 

multiple Docker containers. A Prime+Probe cache side-channel attack took place against 

an RSA enabled collocated SGX enclave. The attack took advantage of a constant-time 

multiplication primitive working in SGX enclaves, where there are no timers, no large 

pages, no physical addresses, and no shared memory. Within 5 minutes an automated 

attack from 11 traces was able to extract the full RSA private key. 

  2.4.2)  Migration Mitigation: As co-tenancy is a requisite condition for co-resident 

attacks, the simple relocation of a virtual machine to another core or host seems like a 

ready cure. This is, in essence, the same thought process as the ‘air-gap’ solution applied 

to network threats in early internet applications. Taking this mitigation to its logical 

conclusion, however, overrides the economic advantages that come with having a 

virtual machine in the first place because an air-gapped solution necessarily requires one 

of the most expensive components: maintaining personnel. 

   Migration solutions require a more nuanced approach to be effective in a cloud 

environment. First, the determination of whether a co-resident threat exists sufficient 

due to another VM achieving co-residency with a benign user is different from a benign 

user landing on a system where they must determine the threat of all the users already 

present [54]. Second, the implications for a live migration are different from the process 

of stopping and starting, particularly in the attacker attempting to re-acquire the target 

[44, 55]. In a sense, even the enclave means of security is a migration. 

   All co-tenancy issues are not created equally. Mere side-channel issues suggest a 

different information leakage than attempts to steal encryption keys [56, 34]. The 
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determination of whether migration is effective is a strategic decision considering 

factors as intricate as the attack itself [57]. 
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2.5  Game Theory Application In The Cloud 

   A cloud data center is a shared and highly dynamic environment. Activity occurring 

over space and time is constrained by the provider and the limitations of the resources. 

User agents seek to act in their own best interests, possibly exploitative of the effects of 

other’s actions. Competing interests in the cloud reflect co-dependence modeled in 

game theory. 

  2.5.1)  Applicable Game Theory: Any applicable game-theory model depends on the 

aspect of the cloud that is being developed. Models for network contention differ from 

those for power delivery, which, in turn, differ from security. For instance, power 

resource sharing has been proposed as a cooperative game [58]. Resource contention, 

on the other hand, has been modeled as a coalition game [59]. Security has been 

modeled in the Nash equilibrium game and as a bin-packing problem [48], as well as 

many others. Each of these brings its own characteristics and degree of applicability. 

  2.5.2)  Challenges to Cloud Security Game Theory Models: Difficulty in obtaining 

metrics to evaluate co-resident risk, user information, and scoring for game theory 

applications remains a challenge [60, 61]. A rudimentary Nash equilibrium has been 

applied where the actions of system-sharing users must be considered for enhanced 

security. However, probabilities of co-location do not provide expenditures and utilities. 

   Applying what information is available in cloud computing, modern 

implementations invoke machine learning and artificial intelligence [62] and intricate 

models exist to deduce the utility associated with these strategies [63]. Previous works 

also recognize the idealization of no risk but hue to the defense [64]. 



          21 

 

   It is the quantitative aspect of utility that provides strategic evaluation. 

Evolutionary models of game-theory exist that evaluate these payoffs differently than 

the Nash equilibrium, and these will be applied in the second section of this study. 

However, the extensive form games with multiple moves, mixed strategies, and 

elimination of dominated strategies are dependent on measurable determinations of 

success and failure in an economic context. A development of this concept is in 

Appendix C. 

2.6  Serverless Computing and Functions-as-a-Service 

  The success of cloud computing showed that the collocation of computational power 

with technical and logistical support allows information technology at an economy of 

scale. The IaaS, PaaS, and SaaS offerings provide variety and a multi-tier system with 

gradient pricing. Following this, an ambiguous and noncommittal proposition of the 

Internet of ‘Things’ (IoT) was enough to invite outliers into the cloud [65]. ‘Cloud’ 

becoming ‘fog’ [66], further obscuring ‘Things’ at ‘The Edge’ [67, 68]. 

   Breaking out of ‘Something-as-a-service’ (XaaS) [6] categorized the cloud 

components, expanded to become ‘Anything-as-a-service’ (XaaS) [69], and was modeled 

as ‘Everything-as-a-service’ (XaaS) [70]. Since the boundaries between different types of 

‘as-a-Service’ may be disappearing [71], it was clear that another acronym was not the 

solution. 

   A structural change was occurring in the cloud, interfacing with a wider and deeper 

customer base. These were supported by an IaaS analog called backend-as-a-service 

(BaaS), although the demarcation is not well defined [72]. A modular and finer-grained 
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paradigm emerged [73], one which would require its own security evaluation [34]. These 

came to be called serverless computing and functions-as-a-service. 

2.7  Serverless Cloud 

   “Serverless computing refers to the concept of building and running applications 

that do not require server management. It describes a finer-grained deployment model 

where applications, bundled as one or more functions, are uploaded to a platform and 

then executed, scaled, and bill needed at the moment.” For providers, the application of 

serverless has attracted more consumers and increased their competitive advantage 

[74]. 

   In spite of, or perhaps because of, the large number of offerings, cloud service 

providers (CSP) found that they had a high degree of under-utilization. By some 

estimates, 90% of the data-center capacity was idle at any given time [75]. Over-

subscription was a contingency for which the providers had to provide idle space 

because cloud utilization was viewed as a bin-packing problem. Notably, this provided 

an incentive to scale down to micro-services, which answered the market demand for 

greater utility per cost [76]. 

   Granularity and specialization simply made economic sense. IaaS was a 

macroeconomic term suitable for large-scale applications, but a one-size-fits-all model 

was never the intent of the cloud [77]. Micro-services became a means to decouple 

monolithic applications into independent components [78]. So, the term ‘serverless’ is 

somewhat of a misnomer [79] because servers remain an integral part of cloud 
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computing data-centers [80]. Micro-services was meant as a technical term, while 

serverless was a marketing term [81] [82]. 

2.8  Serverless Becoming Function-as-a-Service 

   Serverless shifted requirements to provision memory, configure networking, and 

update software from the customer to the CSP [83]. Decoupled elements of applications 

redistributed the lanes of responsibility in the cloud, redefined the operational 

environment, and reduced bloat[84]. While IaaS, PaaS, and SaaS remain viable, a 

localized sub-genre evolved in what had already become a competitive economy. 

   Like many other aspects of cloud computing (See Section 2.5.), the serverless 

model can be examined with game theory. One such method is to evaluate the 

evolution of software using the extended form [85]. See Appendix A.1.3. Alternatively, 

due to the granular nature of the serverless environment, evolution can be modeled in 

terms of evolutionarily stable strategies that resist elimination through proliferation. A 

game-theoretic examination of this effect in Appendix F describes the cloud conditions 

that were fertile for the Function-as-a-Service model. 

   Function-as-a-Service (FaaS) implements user-defined logic as stateless functions. 

These functions are written by the client business activity on a serverless run-time 

platform in an appropriate high-level language. As institution-developed business logic, 

FaaS is tailored to formats and modularity more specific than those packaged cloud 

products. The co-resident security of the FaaS model is considered in the remainder of 

the study. 
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2.9  Serverless FaaS Virtualization Candidates 

   Virtual machines provide a single-owner appearance to multiple users’ applications 

that might be running on the same host or even the same core. The VM was expected to 

remain ‘on’ and even in an optimized migration scenario, might take in the range of 

minutes to start. Disencumbering the end user from managing this overhead is the basis 

for the serverless name, giving user-designed logic its agility. As the capital element of 

the cloud economy (See Section 1.1.) the proper virtualization method for serverless 

considers several candidates. 

  2.9.1)  Virtual Machines (VM): Virtual machines of traditional cloud computing (IaaS, 

PaaS, and SaaS) have secured their place in the data-center. They are able to implement 

the complete software stack, migrate under the control of a VMM, and take advantage 

of a vast array of security measures. Virtual machines are a very mature technology that 

can be applied in any modern computing environment. 

   The overhead associated with this method of virtualization, however, is too 

cumbersome for serverless computing. With start times that can extend into several 

minutes, they are simply not responsive enough. While code that executes in a discrete 

function execution environment is possibly only a few lines long, the VM is bulky, slow, 

and non-portable. 

   They are provisioned from the abstraction of a bare-metal server from which an 

operating system supports an additional software application when minimization is the 

objective in serverless. The VM is the provider’s method of rationing computing power 
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in the data-center with the standard security methods. However, the serverless 

customer will not have direct access to this level of abstraction. 

  2.9.2)  Micro VM: Micro-VMs reduce the overhead of a VM by merging the Linux 

kernel with a reduced hardware emulator [86]. In this method, they customize the Linux 

kernel and shrink peripheral device support. The micro-vm implements a few of the 

robust security measures of the complete VM stack. However, this is a result of 

deliberate trade-offs [87]. The micro-VM occupies the position of being a middle-ground 

solution, implementing a set of optimizations but requiring specific security 

enhancements. 

  2.9.3)  Uni-Kernels: Light-weight, narrow utility options exist. A uni-kernel merges the 

minimal OS components and application binaries with both small memory footprints 

and fast startup times [88]. Auxiliary components to the uni-kernel require additional 

overhead, which further limits their applicability in environments where programmers 

customize logic [89]. Developing a broad security package is anti-ethical to this method 

of virtualization. A generalized solution can be made fast but lacks robust, definitive 

security [90]. 

2.10  Containers 

   For a large base of the serverless model, an alternate, finer-grained form of 

virtualization is employed: containers. Rather than hardware virtualization in VMs, 

micro-services run in an operation system virtualization platform. As a structure running 

on a shared environment, it is nimble and portable, has low startup latency, and is 
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scalable. Package-dependent granularity permits containers (the serverless run-time 

environment) to be the economic analog to the virtual machine. 

   By design, FaaS executes a discrete piece of code that may be only a few lines. 

When applying high-level languages, such as Python or node.js, the execution time may 

be in the order of tens of milliseconds. A previously compiled, meaning, assembled, and 

linked object file is able to run on an appropriate operation system. However, such an 

arrangement is not characteristic of a serverless environment. Under these 

circumstances, a balance must exist between a running environment set-up time and 

the actual clocking of code execution. 

   Providing a virtualization of the operating system, Linux within this research, the 

container deviates from the VM hardware abstraction in both its composition and 

capabilities. Structures in the Linux kernel remove selected interface methods present in 

the VM model. Where the virtual machine requires the VMM, a kernel-based method of 

resource management is distributed to containers. Such streamlining results in a lighter-

weight implementation but, at the same, time imposes a different security model. 

  2.10.1)  Name Spaces: The container environment is constructed with isolation 

ingrained into its component threads.  Virtualization is achieved by processes that are 

walled off from other shared system users at the Linux kernel level [91]. A name-space 

sequesters the processes that form a container run-time environment by blinding them 

to those not in that name-space. 

   Although far from perfect [92] or even universal in methodology [89], the ability to 

uniquely identify and associate the essential functional components of a host resource is 
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the foundation of container security. Originating with the Plan 9 Linux version from Bell 

Labs, name-spaces were limited to a single isolation measure. In order of release, flag, 

and functionality, name-spaced resources are in Table 2.2, and descriptions are in 

Appendix D.1. 

  2.10.2)  Control Groups: In the Linux kernel, control groups (cgroups) manage system 

resources or a set of tasks or processes. This structure forms a hierarchy that applies to 

all of the process’ children. The cgroup mechanism partitions groups of processes into 

rationed resources. Child processes also inherit attributes from their parent processes. 

 

TABLE 2.2: 
NAME-SPACES. LINUX NAME-SPACES UTILIZED IN CONTAINER FORMATION. THESE 

ISOLATE RESOURCES BY OBSCURING PROCESSES FROM VISIBILITY TO OTHER USERS ON 
THE SAME PLATFORM. 

Number Name-space  
1 Mount for file system isolation 
2 UTS for hostname and domain 

name isolation 
3 IPC for IPC and message queue 

isolation 
4 PID for process ID isolation 
5 Network for network resource 

isolation 
6 User for UID/GID isolation 
7 Cgroup for control group 

isolation 
8 Time for clock time isolation 

 
  Linux containers place resource limits on each container within the name-spaces and 

prevent a single container from overworking the host [93]. cgroups can also assign 

parallel resources to each container and gauge their usage. Through file editing (See 
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Section 2.10.3.), the resources listed in the cgroups can be managed for parsing out to 

users [91]. cgroups are listed in Table 2.3, and a description is in Appendix D.2. 

  2.10.3)  Images: Containers are developed from portable scripts. A container engine 

interprets this script to construct multi-level system tools, libraries, and templates with 

access to necessary dependencies in an image format [94]. Then, the engine creates the 

container in which the serverless functions run. These generally become active faster 

than a VM run-time environment, complete a task, and will shut down thereafter. 

   Containers can run as normal system processes, though features such as overlay 

file systems can add performance overheads. A hierarchical sandboxing structure results 

from a parent process spawning child processes that have restricted resource views, for 

example virtual network devices or remapped root file systems [95]. 

TABLE 2.3: 
CONTROL GROUPS (CGROUPS). CGROUPS MANAGE THE RESOURCE RATIONING TO 
USERS SHARING THE SAME PLATFORM. THE RESOURCE PROVISIONING ASSUMES A 

HIERARCHICAL STRUCTURE WHICH PARSES OUT COMPUTING POWER TO SUBORDINATE 
PROCESSES. 

Number Control Group 
1 blkio 
2 cpu 
3 cpuacct 
4 cpuset 
5 device 
6 freezer 
7 hugetlb 
8 memory 
9 net_cls 
10 net_prio 
11 ns perf_event 
12 pid 
13 rdma 
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  2.10.4)  Container Scanners: Image scanning for recognized software, configuration, 

and composition vulnerabilities is the first tier of security for containers. Scan logic is 

based on the published vulnerabilities in several open-source and market offerings [96]. 

Images are tested at creation time for any of the published package or dependency 

vulnerabilities. 

   However, the system of adopting scanner utilities into the container environment 

is challenging in practice [94]. CVEs (See below in Subsection 2.10.5.) must span multiple 

types of containers and serverless platforms [97] and expand to the FaaS environment 

[98]. The use of scanning tools is an improvement over making no effort to detect 

vulnerabilities. However, they are at best 65 % accurate in the detection rate, leaving 

over a third of the vulnerabilities undetected by any tool that can perform integrated 

static and dynamic scans. [96] 

  2.10.5)  Common Vulnerabilities and Exposures Updates: The Common Vulnerabilities 

and Exposures (CVE), which has identified threats to computing systems in the 

thousands, has hundreds of recognized container weaknesses [99]. When vulnerability 

within a computer system or an architecture that risks exposure of data or code is 

discovered, a CVE numbering authority (CNA) will list and describe the CVE. While these 

may apply to the system as a whole, there are entries particular to the FaaS run-time 

environment. 

   CVEs are a product of a coalition of computer security organizations managed 

through the MITRE Corporation, which includes the National Institute of Standards and 

Technology (NIST) and partnered with the U.S. Cybersecurity and Infrastructure Security 
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Agency (CISA). The CVE maintains several entries for vulnerabilities and exposures of 

containers as well as remedies [100] [93]. The availability to implement the CVE within 

vulnerability scanners provides for an automated security posture, depending on the 

available source of scanners [101]. However, the scope of the assignment and its 

consequences present conflicted interests [102]. 

2.11  Serverless Threats 

   Serverless computing, a cornerstone element of the Cloud Native Computing 

Foundation ( CNCF), has vulnerabilities that are an industry-level concern. The threats to 

security in the cloud are cataloged by the industry organization, The Open Worldwide 

Application Security Project (OWASP). The OWASP Top Ten security threats to the cloud 

are published biannually, and are considered the standard priorities for vulnerability 

mitigation. They are listed and described in Appendix B.1. 

   The serverless environment considers a variation of these vulnerabilities that 

reorders and adjusts them for serverless. These have a similar composition and are in a 

different order than the base version (see Table 2.4). A fuller description is in Appendix 

E.1. Adjustments and cautions made to the serverless run-time environments to address 

these vulnerabilities have provided a more robust level of protection. 

  2.11.1)  Serverless FaaS Threats: The transition of management and configuration of 

the serverless platform to the provider and reduction of end-user interaction with the 

operating system seemingly reduces the risk of vulnerabilities [103]. Minimizing run-

time also notionally reduces the attack surface [104]. Experiments have shown that this 

is not the case [105]. At best, transition to container environments is a 
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security/performance trade-off [106] and, though the attack surface may be reduced, it 

has been brought closer to the attacker. 

 

TABLE 2.4 
THE OWASP TOP TEN INTERPRETATION FOR SERVERLESS. DETAILS AND EXPLANATIONS 

ARE IN APPENDIX E.1. 
Threat 

Injection 
Broken Authentication Cryptographic Failures 

Sensitive Data Exposure 
XML External Entities ( XXE ) 

Broken Access Control 
Security Misconfiguration 
Cross-Site Scripting ( XSS ) 
Insecure Deserialization 

Using Components with Known Vulnerabilities 
Insufficient Logging and Monitoring 

 

 Limitation of privileges is a ready solution for serverless in general and FaaS in particular 

[2]. However, the centralization of security protocols under the single umbrella of role-

based access control (RBAC) and attribute-based access control (ABAC) the risk from a 

single point of failure [107]. Also, containers cannot be the exclusive method of meeting 

the threats to serverless environments. Their organic isolation methods are only an 

effective measure so long as other resource conflicts can be averted [92]. 

   Serverless systems may display the effects of attacks differently than those 

resulting from common attack vectors and may exhibit results differently than those 

intended by the attacker [108]. The depth of change bought about by serverless in 

general and the spectrum of FaaS participants in specific would suggest that security will 
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be increasingly audience driven. These may be corporate, individuals, or even 

government actors. 

  2.11.2)  Container Co-Resident Threat: The risks that come with container co-

residence have long been a concern complementary to various container vulnerabilities: 

•  Container compromise: compromise by means of illegitimate data access, Man-

in-the-Middle (MitM) attacks or by affecting the control flow of instructions executed in 

other containers. 

•  Denial of Service: disturb normal operation of the host or other containers 

•  Privilege escalation: obtain a privilege not originally granted to a container. 

   If a process inside the container compromises the Linux kernel, the isolation 

provided by the container mechanism becomes invalid [99]. Even prior to the 

implementation of a serverless environment, these threats were explored in early 

versions of OS virtualization. These include [13]: 

•  FreeBSD Jails 

•  Linux-VServer 

•  Solaris Zones 

•  OpenVZ 

•  Cells/Cellrox 
 
   At the time of these sandboxing methods, the most pertinent to the current 

standards in Linux containers was LXC. The security of such systems is intricate and 

nuanced. This applies to the mounting of file systems [13], group IDs [94], and 

processes. These concerns are present until today. 
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2.12  Serverless Mitigations 

  2.12.1)  Hardware Security: Containers may implement one of the enclave protections 

that were applied to VMs. These are protections from the ‘honest but curious’ provider 

of virtualized systems [109]. The goal is to create a secure container mechanism, even 

from ‘friendly’ entities. 

   SGX is a hardware security feature that uses on-chip memory 

encryption/decryption of cache lines. This is an intermediate process on lines in the EPC 

written to and fetched from DRAM. Memory modifications and rollbacks are detected in 

the enclave to enhance memory integrity. SGX stores each thread’s enclave execution 

state in a 4 KB thread control structure (TCS) to support multi-threaded execution inside 

enclaves. The host OS, however, must include a Linux SGX driver and, to boost 

performance, a SCONE kernel module. SCONE does not support the system call fork [95]. 

   Before making a system call, an enclave thread must copy memory-based 

arguments and leave the enclave [95]. Software guard extensions (SGX) protects the 

confidentiality and integrity of a Linux process’ memory, and code, and external file and 

network I/O from unauthorized and potentially privileged attackers. Memory pages 

belonging to an enclave reside in the enclave page cache (EPC), which cannot be 

accessed by code outside of the enclave. 

   Additional CPU protection mechanisms also prevent attacks on the Linux kernel, 

for example, Supervisor Mode Execution Prevention [99]. These are intricate protection 

methods that require configuration at or above the level necessary to manage systems 

that serverless was meant to reduce. 
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  2.12.2)  Linux Security Modules: Various additive components can be integrated into 

the Linux kernel to fortify the connections between the host components. These are 

supplemental to name-space, cgroup, and privilege resource isolation and loadable as 

an modular component of the kernel. These are generally designed around process-

limiting logic: 

•  SELinx, for security enhanced Linux, stands between those processes which use 

root process enablers to illegitimately access objects outside of the kernel. SELinux is a 

central part of Centos, Red Hat, and Fedora distributions. This mandatory access control 

(MAC) policy setting applies to the applications, processes, and files in a container. 

•  AppArmor, or application armor, is integrated into Debian/Ubuntu as opposed 

to SELinux. While SELinux applies as the strong point around files, AppArmor imposes 

constraints on file paths [96]. This methodology contributes to simpler implementation of 

security policies and the ability to analyze the application during run-time [110]. These 

alternatives are allowed by the enforcement and complain settings in AppArmor. 

   SELinux and AppArmor are MAC mechanisms adopted by containers [99]. This is an 

industry term defined by the National Institute of Standards (NIST) SP 800-192: 

“A means of restricting access to system resources based on the 

sensitivity (as represented by a label) of the information contained in the 

system resource and the formal authorization (i.e., clearance) of users to 

access information of such sensitivity.” 
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 Additional optional protections include the module MemGuard, which can limit the CPU 

access to the memory through Linux memory bandwidth management to prevent a DoS 

attack on the memory. [96] 

  2.12.3)  Secure Computing Mode (SecComp): In addition to the MAC modules above, 

discretionary access control (DAC) implements transferable management tools. These 

are applicable to the containers on the basis of users or groups. In Docker, this occurs 

when SecComp denies the available system calls for a container through a SecComp 

profile. [96] 

   SecComp constrains the system calls, which a process can invoke by either filtering 

them to the kernel from the container [99] or allowing only read, write, and exit in strict 

mode [111]. These process-limiting structures are built into the Berkeley packet filter 

(BPF), constraining the ability of any user function to affect the kernel. 

  2.12.4)  Capabilities: Capabilities are a list of privileges that can be enabled or 

disabled for a process. Like the SELinx, they limit a root-enabled processes to the 

minimum permissions required for it to perform its function. A component of POSIX, 

capabilities provides a mechanism for partitioning traditional superuser privileges and 

assigning them to particular processes. [112] Capabilities divided superuser privileges 

into 38 distinct tracks representing permission to process a given kernel resources.[99] 

2.13  Serverless and FaaS Platforms 

   Whether a version of micro-services is implemented for commercial purposes or 

for hobbyist projects, the choice of serverless venues is voluminous. The development of 

serverless platforms presents challenges [71] and requires its own set of terms [113]. 
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However, a well tread path of addressing these challenges [83] has garnered a structural 

refinement. 

  2.13.1)  Commercial Platforms: Amazon Lambda is generally credited with being the 

genesis of FaaS computing [81].1  But there are multiple CSP’s currently offering FaaS 

environments: 

•  AWS Lambda 

•  Microsoft Azure 

•  Google Cloud Functions ( GCF ) 

•  IBM Cloud Functions (Open Whisk) 

   Each of these CSP offerings has stylistic and functional features. They can generally 

be expected to have an event triggering model [115], some means of limiting execution 

time [116] , and possibly a means to specify computing power [117]. In all cases, the 

billing is in short term granularity [74]. 

   Users share platforms with other users simultaneously. For instance, one FaaS 

client may be utilizing 50% of a system’s CPU resources, while two others divide up the 

remaining 50%. Each may be running the same functions or different functions in their 

computational space. However, the means that most commercial users employ to ration 

this space is generally not published. 

 
1 Note: The first reference to serverless computing found by this research was for a public start up in 2010 
[114]. The platform utilized the Amazon cloud as a back-end. No further documentation of this provider was 
available, although the article describes a Functions-as-a-Service platform. Amazon Lambda has the 
character of industry standard naming, and holds to proprietary methods. Various models of how FaaS 
environments arose are in Appendix F. 
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  2.13.2)  Open Source Platforms: Amazon Web Services holds the majority of the FaaS 

commercial market, but several open source FaaS platforms exist. To varying degree 

these fit the same characteristics of the commercial variants. At least one, Open Whisk, 

is an open sourced variation on a commercial product, in this case from IBM. These are 

suitable for internal company networks and for academic study but are limited by 

necessary supporting infrastructure for widespread use. So, while they may have the 

essential components of commercial systems (See Table 2.5.) each has unique features 

[118]. 

TABLE 2.5 
OPEN SOURCE CHARACTERISTICS. 

Platform Orchestrator Scaling Model 
OpenFaaS2 Docker Swarm, 

Kubernetes 
Prometheus 

Kubeless3 Kubernetes Native 
Open Whisk4 None Required Kafka 
Fission Kubernetes Keda 
Nuclio Kubernetes Native 

 
  2.13.3)  Orchestration Considerations: Linux containers are the isolation mechanism in 

many multi-tenant environments running FaaS applications. They provide performance 

and are readily adaptable. The deployment, or process of running 2 container from an 

image, management, scaling, and destruction of containers is accomplished by a 

container orchestrator. Orchestration is an essential element of sequentially activating 

functions in separate containers to form FaaS application tapestries. 

 
2 Community Version  
3 FaaS Framework compliant  
4 O/S Variant 
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   Serving as an industry standard, Docker is prominent for the packaging of the 

containers and Kubernetes for their deployment [95]. While alternative orchestration 

software exists, such as Docker Swarm, the vast majority of serverless platforms use 

Kubernetes. See Table 2.5. 

   Security is also an inherent concern in the orchestrator engineering [106]. Spe3ific 

threat models for orchestration have been explored [119] and their place in the 

container management hierarchy has been cataloged [111]. However, the vulnerability 

use cases center on the containers themselves [93]. This study retains the ‘black box’ 

characteristic of orchestrators due to the significant features that containers, access 

control mechanisms, and the Linux environment provide. 

  2.13.4)  Testing Platform Evaluation: 

   Testing platforms were selected from three candidates discussed in Chapter 2.15, 

Table 2.5. 

  The preliminary evaluation included: 

•  OpenFaaS 

•  Open Whisk 

•  vHive5 

 
   Each was evaluated for its suitability as a testing platform. OpenFaaS was rejected 

due to inconsistency between its open-source and commercial variants as well as 

 
5 vHive was considered as an alternative due to its suitability to academic study [120]. This platform was not 
a member of the original evaluation. Its inclusion here recognizes its implementation of the base platform: 
Kubernetes. 
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challenges identified by cohort testers [121]. The Open Whisk platform required an 

overhead in configuration and re-install, which was prohibitive of its adoption. vHive, as 

well as the other candidate platforms, highlighted the prevalence of the Kubernetes 

cluster as a component of the majority of open-source platforms. 

2.14  Serverless Applications 

   The serverless model has been adopted for a wide range of applications and for 

various purposes. Cost savings, reduction of idle time, and appropriateness for event-

driven programs comprise a large subset of these transitions.  In some cases, a basis for 

the transition cannot be identified [122]. The most broadly associated benefit of using 

serverless computing is the promise of scalability. 

   At the same time, long-running applications are less suitable for the framework 

than bursty loads. Automated attempts to deconstruct monolithic applications have 

inconsistent results [123]. Trust in the serverless model suffers from a lack of control in 

performance [124], double billing [125], and lock-in [71]. 

   Scientific computing and simulations [126] [127] have shown particular promise in 

serverless platforms. The current architecture and programming models have been 

sought after to adapt to high-performance computing (HPC) [128], industrial 

applications [129], and artificial intelligence [130]. Given the ubiquitous interest in the 

platform, security has become a natural concern. 

   Transient function execution places the demand for short startup overhead in 

juxtaposition to deliberately quick execution. Accordingly, scaling back robust security 

barriers to achieve high availability presents an inherent dilemma. The lack of state 
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[131], provider-mandated timeouts [132], and platform trigger availability [133] factor 

into the selection of virtualization methods appropriate for FaaS. 

2.15  The FaaS Co-Resident Threat Model 

   Several threat models in the FaaS environment have been discussed in the 

literature. These may extend only to the conceptual descriptions [134] with largely 

abstract proposals of vulnerability, while other studies examine very specific cases in the 

program flow [135]. Direct links to the vulnerabilities proposed by the OWASP Serverless 

Top Ten (see Appendix E.1.), e.g. server-side forgery and insufficient logging, along with 

mass parallelism, are particular to the FaaS environment [122]. Still, the large selection 

of serverless platforms, data management methods, and provider architectures has 

frustrated a generally applicable study [136]. 

   A general study of memory threats may be possible in serverless environments, 

just as in traditional VM-based clouds; speeding up access to remote data and enabling 

faster data sharing between functions provides a solution for local in-memory caching. 

The primary impetus for FaaS popularity is that managing such tasks no longer falls to 

users [137]. However, caches are not entirely transparent to users, either because 

providers require explicit provisioning or because they provide a separate API for users 

to access the cache. 

   An alternative is that co-resident attacks can be considered in their collective 

forms by taking advantage of FaaS parallelism. The distribution of workloads in the FaaS 

environment skews the possibility of repeated instances of functions running on a single 

host. Targeting functions with particular attributes becomes advantageous, where less 
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than 20% of functions are responsible for 80 % of invocations [80]. This study exploited 

this characteristic and considers the effects of function logic, data passing, and 

susceptibility to shared infrastructure during application execution [98]. 
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CHAPTER 3 

METHODOLOGY 

 

3.1  Co-Resident Game Theory Boundaries 

   A competitor’s viability may rely entirely on the cloud, which suggests a survival of 

the fittest paradigm. Given the game’s risks, rules, and alternatives to players, 

characteristics of utility and rationality could be assessed for zero-sum payoffs and 

strategies allowing play. This allowed determination of measurements at the boundaries 

comparable to a predator-prey model and a game of “keep-away” assessed with the 

baseline models for strategy development. 

  3.1.1)  Game Theory Boundaries: The zero-sum (predation), zero-trust model, and 

inter-quartile range-minimal usage (IQR-MU) optimization were compared. The 

boundary application permitted model behavior at the edges of what allowed a game to 

be played. See Table 3.1 Attackers and victims were assigned co-resident attack metrics 

from a review of the current requirements for a successful attack. The simulation was 

allowed to run until mitigations required additional support. Other metrics in the L-V 

model were kept consistent. 

 3.1.2)  Test Conditions: In the absence of reliable scoring (trustworthy measures of 

payoffs) for the users of the cloud, measures were found in simulations aligned with 

games at the boundaries of the three characteristic features of a game: 

•  Predator-Prey ( Zero-Sum ) 

•  Single Objective ( Zero-Strategy ) 
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•  Zero-Trust ( Zero-Player ) 

 

TABLE 3.1 
GAME THEORY BOUNDARY CONDITIONS. THE BOUNDARY CONDITIONS ARE VALID ONLY 

AS LONG AS THE PARTICULAR COMPONENT OF GAME THEORY IS ABLE TO ADHERE TO 
THE OTHER TWO COMPONENTS. AN INSTANCE OF A GAME WITH A UTILITY MEASURE 

INSIDE OF THE BOUNDARY IS EXPRESSED WITH THE DASHED LINE. 
Component Boundary Condition Explanation 
Players A zero-trust 

relationship. 
Irrationality: In this case no information 
exchange is possible due to meeting 
minimum time for channel formation. 
Migration of virtual machines is omni-
present in the entire data-center and no 
subsequent co-location is possible. The only 
common knowledge is ignorance 
awareness. 

Strategies A zero-balance 
objective. 

Non-Strategic: Complete concern for fastest 
possible and resource preservation. There 
are no concerns for interactive 
considerations. 

Payoffs A zero-sum game. In order for one to succeed, another must 
fail. A closed system without community 
expansion. 

 
   These models are at the boundaries of conditions that allow the use of game 

theory methods. Essential elements that allow the hacker and victims to have payoffs, 

behave rationally, and have strategies will form the game space. An evaluation of risks 

for the individual will be rated in terms of the system health through measurements 

simulated over a 3.5-day period where no distinct advantage is recognizable to either 

type of user from the outside. The method will only consider the defining characteristics 

at the boundaries (see Table 3.2). 
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TABLE 3.2 
GAME THEORY CLOUD SECURITY CHARACTERISTICS. THE SECURITY GAME 

CHARACTERISTICS THAT ARE IMPLEMENTED ON THE SIMULATED CLOUD PLATFORM. 
Characteristic Boundary Behavior 
Rational players At the boundary of playing a dominated 

strategy in zero-trust 
Strategies At the boundary of no competing interests in 

IQR-MU optimization 
Payoffs At the boundary of zero-sum in the predator-

prey model 
 
   A baseline model will be used to develop metrics that do not consider security but 

rather focus on optimizing system performance through VM migration. This optimized 

performance model will form one leg of the game space at the strategy boundary. This 

boundary will intersect with the zero-trust model, where any VM may be benign or 

malicious, unilaterally eliminating the possibility of predation. This forms the boundary 

of player rationality. A model exhibiting the L-V predation characteristic will be 

developed, implementing a zero-sum game at the boundary of payoffs (see Fig. 3.1). 
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Fig. 3.1: Graphical representation of the boundaries of game-space. The essential 
elements of rational players, payoffs, and strategies are constructed to the limits of 
environment. Correlating characteristics for the data-center VM placement method is in 
parenthesis. Modified Payoffs represent a change in security strategy that moves inside 
the game-space, parallel to the Lotka-Voltarra model, and alteration to the security 
environment. 
 

3.2  Building Game Theory Scores In Simulation 

   The game theory security model is evaluated at the boundary of the three game 

characteristics. These were introduced as a Lotka-Voltarra (L-V) predator-prey model 

(zero-sum). See Equations 3.2. Positive parameters a11 and a22 represent species 

characteristics and a21 and a12 model the result of species interaction, which are defined 

in Table 2. 

  3.2.1)  Ecological and Economic Coupling: Within limitations, economic and ecological 

model parallels are well recognized [138] and based on the same life cycle [8]. The 

execution of a business model depends on its productivity, paralleling an animal’s 

Mo,dified Pay-Offs 

(Alternate Game M o,del) 

Pay-Offs 
(Zero-Sum/PredaUori) 
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foraging characteristics. The expansion and dilation of time within the phases are in 

accordance with the species/habitat interaction. 

   A behavioral aligned sequence follows Fig. 3.2. Where virtual machines are a 

transient construction, they migrate both within or across data-centers under the 

policies of the provider [72]. This matching of phases in the two domains is the 

foundation of applying the ecological model to the economic model in the scoring of co-

resident cloud game-theory. 

  3.2.2)  Life Cycle Parallels: An animal life cycle generally exhibits four stages with a 

wide variation in duration and proportion to each other [139]. Birthing, growth, 

reproduction, and death have a spectrum of characteristic activities. Metabolic [140] 

and environmental factors [141] influence the foraging and migration that accompanies 

reproduction [142]. These are characteristics found in a range of habitats and behaviors 

of both predator [143] and prey animals [144]. These are: 

•  Birth. The process of natal to adolescent stages. 

•  Migration. Expansion of domain. 

•  Foraging. Nesting, cultivation, and sustenance. 

•  Multiplication. Courting, procreation, gestation. 

•  Death. Expiration, elimination, ingestion. 

   The predator-prey relationship within a landscape greatly affects the distribution 

and activities of these species throughout the life cycle and the habitat [141]. Similarly, 

none of the above stages is mutually exclusive of any other, given the circumstances. As 

an economic model, the use of cloud services exhibits parallel phases. 
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  3.2.3)  Predator-Prey Model: To implement the zero-sum game, a predator-prey 

relationship was established [145]. The fundamental predator-prey model is the Lotka-

Voltara system of differential equations. The solution of this model depicts a phased bi-

species cyclical variation in population. The parameters that govern the model quantify 

animal characteristics for efficiency in hunting, consumption and digestive efficiency, 

reproduction, and lifespan. Where such factors are realizable in simulation, it is possible 

to align the essential parallels across ecological and cloud domains. 

 

Fig. 3.2: Ecological/economic life cycle parallels. Phases in the economic cycle are 
matched with the phases in ecological cycles of an organism. These match the virtual 
machine in cloud data-center with the in the life cycle of species in an appropriate 
habitat. 
 

  The model of interaction between a predator and a prey is an interdependent 

relationship. It exists throughout a given space and time and is expressed through the 

Lotka-Voltarra system of differential equations. 

creation 

allocation 

migration 

execution 
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dx/dt = a11x − a12xy  (3.1) 

dy/dt = −a22y + a21xy  (3.2) 

   Positive parameters a11 and a22 are factors quantifying species characteristics and 

a21 and a12 are species interaction constants, which are defined in Table 3.3. The 

solution to the Lotka-Voltarra system of differential equations creates a cyclical, out-of-

phase population for both the predators and the prey. For a continuous solution, this 

can be found over any given interval using an appropriate solver (see Fig. 3.3). 

TABLE 3.3 
LOTKA-VOLTARRA MODEL PARAMETERS. X:PREY POPULATION, Y:PREDATOR 

POPULATION 
L-V Parameter Definition 
a11 prey birth rate 
a12 rate of prey death due to 

predator 
a22 predator death rate 
a21 rate of predatory birth due to 

prey 
 
   A discrete solution is obtainable from a difference equation solution but with the 

aid of a limiting constant [146]. Due to the discontinuous solution on a grid space, the 

result is less smooth and non-cyclical (see Fig. 3.4). Given an adequate coupling of the 

predator-prey relationship to a cloud-co-resident environment, this is the expected 

characteristic of the graphical relationship. The projection of the cloud will be onto an 

analogous grid to a discrete L-V solution. An evaluation of the relationship between the 

relationship between users of the cloud and the predator and prey requires an equally 

considered approach. 
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Fig. 3.3: A Runge-Kutta solution to the Lotka-Voltarra differential equations. These 
biphasic solutions were adopted from an ODE45 MATLAB code. 
 

 

Fig. 3.4: A difference equation Lotka-Voltarra solution 
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  These models demonstrated the characteristic out-of-phase population variation 

of the LotkaVoltarra differential equations (see Equations 3.2). By adding additional 

constraints on virtual machine/animal migration, a population fluctuation variance 

could be developed by bringing the model inside the envelope of the boundaries. Job 

completion rates could be developed for both models. However, the applicability of the 

model was limited by the accuracy of the temporal measurements that were available 

for attacks and defense. Such information is characteristically course-grained, if accurate 

at all. 

3.3  FaaS Testing 

   Serverless and functions-as-a-service tests to evaluate the threat of information 

leakage due to multi-user parallelism in a ‘black box’ FaaS environment. Characteristics 

inherent to a hosted, user-defined function run-time, with representative user visible 

metrics, were ingrained in a managed analog to commercially available and open-source 

FaaS environments. Elements that could be reduced, such as stylistic packaging, were 

eliminated, and sequential elements were sectioned off to maintain data integrity and 

manage causes to effects. 

3.4  Predicting Co-Resident Threats in Functions-as-a-Service 

   FaaS-appropriate functions executing as a serverless workload may exhibit timing 

variations resulting from internal tensions between function logic and data 

manipulation interfacing with the platform, in this case, Kubernetes, management 

processes. As the parallelism of these functions increases, bin-packing optimizations are 

tested for the transfer of these perturbations to parallel running functions. Adapting 



          51 

 

data leakage objectives on a VM [147], resource contention, bus de-confliction, 

scheduling, and other optimizations can be evaluated indirectly. Orchestration 

management software will act as the communication medium to evaluate the effects of 

function, library, and data selection. 

  3.4.1)  Scope and Provisioning: Rather than integrate packaged applications available 

through commercial and open-source registries (Docker, OpenFaaS, etc.) or applications 

associated with academic journals, atomic functions were developed as test cases on a 

FaaS analog. Container-based images were selected for their general applicability, size, 

and adaptability to image builds. The platform for orchestration was selected for its 

availability, scalability, and modularity. 

  3.4.2)  Reproducible and Pertinent Objectives: Based on a study that found unreliable 

repeatability in Kubernetes [148], a discretely measured process of development 

informed the experiment’s format. Encumbering or non-viable courses of action were 

re-evaluated and adjusted with specific attention to reproducibility. In particular, the 

previous study suggested that the Kubernetes platform would provide a noisy channel, 

requiring multiple iterations of testing. Proceeding from Chapter 2, characteristics 

suitable for the FaaS model inherent to the platform, run-time environment, and 

selective coding were constrained to those representative of real use cases. 

3.5  Experiment Function Selection and Development 

   While additive modules provide for easy grouping of programming capabilities, a 

containerized environment may be weighed down by unnecessary libraries. Redundant 

abilities, such as functions that are available in multiple modules, induce container 
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bloat. On the other hand, optional libraries may present a wider attack surface by 

leaving gaps in input validation algorithms [94]. The specific language, algorithms, and 

container environments were considered. 

  3.5.1)  Programming Language and Algorithms: Multiple cross-sections exist to 

evaluate a proper test language. Studies comparing the compiled versus the interpreted 

programming environments in FaaS consider the available benchmarking for 

comparison [149]. Library adoption of FaaS applications and their effects on networking 

are debated for commercial and open-source offerings [150]. Lower-level language 

adaptations in the FaaS context are further evaluated for their security [151]. 

   Where options are available for any given platform, six programming 

environments were evaluated for the FaaS representative test. Languages that were 

considered for the test cases are in Table 3.4. The JavaScript language is native to the 

Open Whisk platform, which is found to be suited for asynchronous calls [152]. 

Alternatively, Python supports asynchronous calls [153]. While both are suitable for 

extended applications, this study focuses on the local effects of platform co-residence. 

  The affinity of some languages to a given platform, while others have little use in 

FaaS, filtered the Java and JavaScript options. C++ was rejected due to its greater 

suitability to other attack methods. Studies in FaaS saw Web Assembly rejected for 

similar reasons to C++ [154]. Of the remaining languages, Rust and Python, Python was 

selected due to its widespread adoption. 
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TABLE 3.4 
CANDIDATE PROGRAMMING LANGUAGES. PROSPECTIVE LANGUAGES FOR 

EXPERIMENTAL PURPOSES SUGGESTED BY THE APPLICABLE LITERATURE 
Language FaaS Applicability Benefits / Costs or 

Risks 
Compiled or 
Interpreted 

C++ Widespread adoption 
in programming 

Powerful addressing 
methods / risk of 
crash 

Compiled 

Java Rarely implemented Object  oriented. 
Bulky to adopt 

Byte-code 
compiled, 
JVM  
interpreted 

JavaScript Native to Open-
Whisk 

Web-Enabled API, 
Asynchronous 
Capable / 
Implementation 
overhead 

Interpreted, 
JIT 
compilation 

Rust Web native Niche in audience Compiled 
Web Assembly Suitable for 

integrated, FaaS uses, 
Sandboxed 

Portable, Fast, 
Effective at 
hardware specific 
use-cases 

Compiled 

Python Adapted in most 
platforms 

Multiple libraries / 
Difficult to optimize 
in containers 

Interpreted 

 
  The Python language codes of the candidate routines (see Subsection 3.5.3.) serve 

as examples of what may be used in engineering, high-performance computing, and 

financial applications. Python has a significant knowledge base in the FaaS and 

serverless environment; it is easily portable, and modularity contributes to the method 

of risk mitigation proposed in this study. It was selected, in part, for its slim container 

run-time; however, the ability to reduce container size is limited by multi-stage build 

techniques. 
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  3.5.2)  Algorithm Classes: Classes of algorithms were considered for their application 

in multiple fields [155, 122] and common usage in larger applications [127]. Common 

usage may be in the form of modules, remote procedure calls, integrated coding, or sub-

routines. These algorithm classes were selected for their utility in applications that are 

being targeted for future FaaS applications [130, 156] as evaluated by their presence in 

academic literature. See Table 3.5. 

   Algorithms were selected under criteria that align with fine-grain computations, 

functions, and routines found in industrial, technical, or financial markets [126, 155, 

157]. Their presence in prior FaaS bench-marking literature, availability as a component 

in modular routines, and capacity to integrate into the baseline structure of applications 

were factors in selection. The ability to stress architectural units, platform data 

structures, and system features were also considered [158]. 

   The final criterion was the presence of alternative sub-routines to accomplish the 

main task of the algorithms. For example, a random walk may be a niche test, but the 

routines expressing nodes and edges are utilized in various applications, that is, graph 

theory, optimization. The process of this development is described in the following 

sections, Table 3.6, and Appendix G.4. 

  3.5.3)  Candidate Functions: Sixteen candidate Python functions were considered for 

platform experimentation. See Table 3.6.  Basic functions and alternate routines were 

developed to adjust execution time with a single input parameter. The target execution 

time for a single execution on a stand-alone host running command line Python3 was in 
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the order of 0.5 seconds. This was measured on a single test platform with time 

distributions shown in Section 3.7.1. 

   Each function imports a system module to take the input parameter and a time 

module to attain the beginning of execution, starting at the input command, and the 

function finishing time. Functions may contain more than one additional module, but no 

more than four imported modules. The same analysis for distribution that evaluated the 

preliminary test (see Section 3.7.) functions was undertaken with results in Appendix 

G.5. 

TABLE 3.5 
CANDIDATE ROUTINES AND LITERATURE SUPPORT 

Routine Description Reference 
Matrix Operations Creation an inverse matrix capable of 

being multiplied with input matrix to form 
identity matrix 

[159] [160] 

Sequences Finding elements of a limited general term 
capable of creating a convergent or 
divergent series 

[161] 

Sorting Arrange a vector of values in ascending or 
descending order 

[77] 

Floating Point 
Operations 

Calculations for irrational numbers or 
using irrational numbers and operations 
to a small epsilon 

[158] 

Monte Carlo 
Simulations 

Calculation for an approximate solution 
using probabilistic methods 

[162] 

Simplex Methods Optimization routines for multi parameter 
systems 

 

Prime Number 
Operations 

Assessing whether a number or set of 
numbers is prime or developing primes 

[86] 

Modular Arithmetic Calculations with a modulus component [9] 
Integration Determine area under a curve or volume 

within a shell 
[163] 
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TABLE 3.6 
CANDIDATE FUNCTIONS 

Description Input Parameter / Target 
Condition 

Utilization Targets / Unique 
Libraries 

Buffon’s Needle test using 
Numpy randomization 

n = 2750 / nth iteration 
estimation of pi. 

Randomizing hardware / 
Numpy. 

Buffon’s Needle test: LCG, 
Taylor Series, and recursion 

n = 2750 / nth iteration 
estimation of pi. 

Recursion / None. 

Buffon’s Needle 
test:mRandom module 
randomization 

n = 2750 / nth iteration 
estimation of pi. 

Randomizing hardware, 
iterated loops / Random. 

Factorial Computation n = 150 / Factorial of n Recursion function calls /  
None 

Fibonacci Sequence n = 25 / Finding the nth num- 
ber 

Function calls / None 

Integration under a 
polynomial 

n = [5 - 0] / Find area under 
an nth order polynomial to 
epsilon 

ALU / None 

Large number FP division 
using math module as 
convergence check 

n = 8 / Iterative division of a 
number to a quotient less 
than 2 ^n 

Floating point unit, cache / 
Math 

Large number FP division 
using Numpy module as 
convergence check 

n = 8 / Iterative division of a 
number to a quotient less 
than 2 ^n. 

Floating point unit / Numpy 

Matrix inversion using LU 
decomposition 

n = 147 / n order of a square 
matrix) 

Floating point unit, cache 
storage / None. 

Matrix inversion using 
Numpy 

n = 77 / n = order of a square 
matrix) 

FP Unit / Numpy 

Random Walk using Random n = 41 / n = number of steps Randomizer / Random 
Random Walks using Time n = 41 / n = number of steps Timing Hardware / Time 
Sorting n = 16 / n = range of vector 

item length 
ALU, Memory / None 

Sorting using itemgetter 
iteration module 

n = 16 / n = range of vector 
item length 

ALU, Memory / Operator 

Twin primes calculation n = 10×109 / Twin primes 
below the value n 

ALU / None 
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 3.5.4)  Container Builds and Images: A significant factor in container build routines 

was the imported Python libraries. Baseline import of system and time modules allowed 

for simple input and output as well as execution time determination, respectively. 

Additional modules included commands that could be compared with similar 

functionality in other modules or ad hoc algorithms. String handling routines were non-

prioritized in favor of numeric modules. 

   Algorithms that adopted ad hoc subroutines were constrained to operate on the 

same data type, variable number, and configuration as the imported modules. However, 

the exact numeric values of internal parameters could not be guaranteed, particularly in 

random tests. Multiple imports from the same modules were avoided. 

   Adhering to these objectives, the containers for this test were built on the 

Python:3.10-slim baseline image. Due to the limited utility of staged Python builds, a 

single stage process was programmed into the Dockerfile. An alternative virtualization 

software could serve to reduce the Python container size by using multi-stage builds. 

This was rejected due to the additional layer of abstraction. 

   A typical build file is in Fig. 3.5. The successful build process creates an image 

which is saved to a local Docker registry. The Docker image build begins with a 

download process of any files that are not present on the local registry (see Fig. G.1 in 

Appendix G.1). An image build process is necessary for each candidate function. 
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Fig. 3.5 A typical Dockerfile for container build. A single stage Dockerfile for Buffon’s 
needle test. The build requires the import of a Numpy module (See line 13.) and takes a 
single input parameter (See line 24.) 
 
3.6.  Orchestration and User Interface 

   Kubernetes was selected for the experiment platform for its versatility, availability, 

and modularity. Its command line interface was amenable to scripting, and the 

modularity of its run-time environment was suitable for the scaling characteristic of 

FaaS. A single host variant, Minikube, was chosen due to its mirror characteristics and its 

developmental capabilities. No alterations to the default structure were integrated in 

order to maintain the ‘black box’ characteristic of the platform.  

  3.6.1)  Cluster Environment: Kubernetes incorporates the Docker container 

environment as a native run-time and offers performance metrics at the FaaS user level. 

The container run-time utilized in this project is Docker open-source for Linux 

1 # For more inf ormat ion ) please r efer to ht tps ://aka .ms/vscode-docker- python 
2 FRON pyt hon : 3 . 10- slim 

3 
4 # Keeps Pyt hon f rom gener ating . pyc f i les in the cont ainer 
S ENV PYTHOl'IDOtlTl•!R ITEBYTECODE=l 

6 
7 # Turns off buffering for easier cont ainer l ogging 
8 ENV PYTHON\JNBUFFERED=l 

9 
10 # Inst all pip requirement s 
11 COPY requ irements. t xt . 
12 RUN python -m pip install - r requirement.s . t xt 
13 RUN pip inst all numpy 
14 WORKOIR Japp 

15 COPY , Japp 

16 
17 # Cr eates a non - root user wi t h an expli cit UIO and adds permission to access the / app f ol der 
18 # f or more info, pl ease ref er t o ht t ps!/ / aka .ms/vscode-docker -p;rthon-configure - conta iners 
19 RUN adduser - u 5678 - -disabl ed-pas.s\11ord --gecos '"' appuser && choNn -R appu ser / app 
20 US'ER appu.ser 
21 
22 # During debugging, th is entr;r point l"i ll be overr i dden. 
23 # For more inf ormat ion} please r efer to ht tps://aka .ms/vscode-docker- python -debug 
24 ENTRYPOINT [ "pyt hon3" , " buffon - test, py" , " paraml " ) 
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distributions. Docker container images are stored on a local repository in the 

experimental host operating an Ubuntu 22.04 LTS install. Once created and placed in the 

repository, the host is disconnected from the network to avoid interference from 

updates. 

  3.6.2)  Pod Structure: The pod is the primary unit of code run-time in the Kubernetes 

cluster. Although Docker containers do not require the use of pods, in order to have the 

co-resident risk on a Kubernetes cluster, a level of native isolation had to be adopted. 

The pods in this experiment have a one-to-one relationship with the containers therein. 

  3.6.3)  Data Extraction: Function execution timing data is extracted by internal 

commands within the function code. These are generally the time of start and time of 

finish. As a basic feature, these require the import of the Python time module. The code 

to do so is demonstrated in the Python codes for this study in Appendix G.4. 

   The default configuration of Kubernetes is inadequate for extracting scheduling 

data and container spin-up, start time, and stop time. These require the addition of 

verbosity flags during cluster activation. The accompanying Figs. are in Appendix G.3. 

Without the flags being set, timing data is a null value for all event data in the pod 

structure (see Fig. G.3. By including the «–extraconfiguration=scheduler.v=4» flag on 

startup, timing data on pod scheduling was available to the micro-second. See Fig. G.4. 

This metric served to order pods within name-spaces (see Section G.3.1 in Appendix G). 

The gap between the scheduling of pods and the beginning of function execution is 

significant. 
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   This proved to be the case in multiple platforms (see Figs. in G.7). This required the 

addition of an additional intervening metric with the «–extra-configuration=api-

server.v=4» flag on startup. This permitted the extraction of the container start up 

within a pod as well as its shutdown after code execution. See Appendix G.3.2. These 

data extraction methods were applied as in the following sections. 

3.7  Function Preliminary Tests 

   Preliminary tests of functions were undertaken to determine characteristics of 

execution times through multiple invocations. These tests were designed to determine 

aggregate execution time characteristics that indicate whether any temporal 

phenomena distinguish the stand-alone and shared platform or can be recognized as 

mutated in a co-resident platform. 

  Four test functions were selected from those in Section 4.3 and coded as in Appendix 

G.4. The selections were: 

•  Buffon’s needle test using a random module for test and Numpy module for 

calculation. 

•  Large number floating point division using the math module for convergence 

testing. 

•  A Fibonacci sequence calculation algorithm with no imported libraries. 

•  Matrix inversion using Numpy randomization for matrix creation and matrix 

inversion. 
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   These were considered adequate baselines due to the selected factors. They were 

also selected to measure the variability of the algorithm and library selection for 

combinations of functions in later tests. Tests were conducted in both serial executions 

on a stand-alone environment and in parallel on a Kubernetes Minikube cluster. 

  3.7.1)  Individual Execution Times: Each function adopted for this experiment 

contained the necessary libraries to receive input and output. An additional module for 

time allowed for the determination of execution times in seconds from the epoch, 12 

midnight on 1 January 1970. A start time was found at the entry point into the code and 

stored, prior to saving the run-time parameter to an input variable through the system 

argument. The characteristic code of the algorithm executed and a second time was 

taken. The difference between the finish and start time was calculated. 

   Exemplary results of these tests are shown in Fig. 3.6. The code for these tests is in 

Appendix G.4. For the process of this test, 600 iterations of the function execution were 

conducted through a Linux shell script. 

 3.7.2)  Parallel Execution Times: A parallel execution of the same test functions was 

conducted on the selected test platform using the default settings. Four namespaces 

were established to match the final experiment configuration, each evenly dividing the 

default resources. 

   600 individual trial functions matched the number and type of the serial 

executions in algorithm and input parameters. Ten iterations of 60 functions executed 

15 functions in parallel per namespace. The test’s graphic results are in Fig. 3.7. 
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Fig. 3.6 Execution times of 600 function iterations. Data points are in order of data 
collection. Top Left: Buffon’s Needle Test. Top Right: Floating Point Division. Bottom 
Left: A Fibonacci Sequence. Bottom Left: Matrix Inversion. Detail of routine methods is 
in each graph title. Input parameters were selected to center around 0.5 seconds 
execution time. 
 
 3.7.3)  Serial/Parallel Timing Comparison: Characteristic execution times were 

evaluated to compare the series executions in Section 3.7.1 with parallel execution 

times in Section 3.7.2. A box-plot comparison indicated that only the routine for a 

random matrix inversion using Numpy exhibited variation in behavior significant to 

other algorithms between serial and parallel execution times (see Fig. 3.8). 

 

Button's Test Using Only Numpy, Serial Execution Times 
0.56 ~ --~ ----,-c-~-~~--~--~---, 

0.54 

~ x 0.52 
0 
Q) 

E 
i= 0.5 
C 
0 

~ 
" ii 0.48 w 

0.46 

0.44 
0 100 200 300 400 500 600 

Python Function (x) 

0
_
53 

__ F_ib_o_n_a_c_ci_S_e_q~u_e_n_ce_ C_a_lc_u_la_t_io_n_,_S_e_ri_a_l E_x_e_c_u_ti_o_n_T_im_ e_s_ 

0.52 

~ x 0.51 

0 
Q) 

E 
~ 0.5 
C 

~ 
~ 0.49 w 

0.48 

0.47 ~--~---~---~---~--~---J 
0 100 200 300 400 500 600 

Python Function (x) 

Floating Point Division Test Using Math, Serial Execution Times 
0.62 ~ -~~---~ ---,-"---~--~ ---, 

0.6 

0.58 

,:,," 0.56 
0 
Q) 

0.54 E 
i= 
C 
0 0.52 
~ 
al 
>< 0.5 w 

0.48 

0.46 

0.44 ~ --~---~ ---~---~--~ ---~ 
0 100 200 300 400 500 600 

Python Function (x) 

0
_
85 

_ _ R_a_nd_o_m_ M_a_t_ri_x_N_u_m~p~y~ ln_v_e_rs_io_n_,_S_e_r_ia_l _E_xe_c_u_t_io_n_T_i_m_e_s_ 

0.8 

0.75 

,:,' 0.7 
0 
~ 0.65 
i= 
C 

~ 0.6 

al 
i.tJ 0.55 

0.5 

0.4 ~--~---~---~---~--~---J 
0 100 200 300 400 500 600 

Python Function (x) 



          63 

 

3.8  Platform Tests 

  A comparison of run-times for serial functions against run-times of parallel 

execution on a Kubernetes platform was conducted to determine and compare 

distributions. This was conducted with the same functions and parameters in previous. 

Procedures for determination of the effects on the function and Kubernetes pods were 

evaluated as well as the interrelation of functions and namespaces. 

  3.8.1)  Function and Pod Interaction: Cumulative distribution functions (CDF) for the 

probability that a randomly selected function executes below a given time is charted for 

the same timing data in the previous section. Fig. 3.9 graphs CDF the serial executions of 

the function alone. Fig. 3.10 charts the cumulative distribution for the entire length of 

the parallel pod execution. 

  Both serial and parallel function execution distributions show a hysteresis shape, 

suggesting a normal (Gaussian) distribution. An average, µ, and standard deviation, σ, 

were determined. 
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Fig. 3.7 Execution times of 600 function parallel executions. Parallel functions were 
divided evenly into four name-spaces in 10 tests. Input parameters were the same as in 
the previous. Representative functions were: (a) Buffon’s Needle Test. (b) Floating point 
division. (c) Fibonacci sequence. (d) Numpy matrix inversion charted for a comparison 
with the Gaussian distribution 
 
   Skewness was also found for each graph. In all cases, a parallel between an 

idealized normal distribution and the recorded distribution was parallel with the 

idealized distribution, leading to the recorded CDF. The closely matched serial 

distributions tend to indicate the presence of noise in the Kubernetes pod formation. 
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   Skewness was less pronounced in the parallel, pod based execution. Both serial 

and parallel distributions had skewness values close to zero, indicating near Gaussian 

timing. The lower order of skewness in the parallel Kubernetes environment suggests a 

greater impact of the central limit theorem and a higher number of independent factors 

affecting pod execution time. 
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(b) Parallel Tests 

Fig. 3.8 Function box plot comparison. Function data from Figs. 3.6 and 3.7 of the four 
test Python codes. (a) Serial executions (b) Parallel execution times. 
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Fig. 3.9: CDF’s of 600 serial function executions. 
 
 3.8.2)  Function and Name-Space Interaction: In Section 3.8.1, the function selection 

was uniform (A homogeneous set.) across time in the serial test and space in the 

parallelism test. That is, parallelism was introduced across Kubernetes name-spaces. A 

Kubernetes cluster, the type of platform being used for this test, operates from a 

hierarchy with multiple name-spaces, each holding multiple pods. The impact of the 

boundaries between these name-spaces requires closer examination, particularly on 

how it impacts the running time of non-homogeneous containerized functions. 
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Fig. 3.10.  CDF’s of parallel executions.  Test were from 600 executions of the test 
functions taken in 10 sets in ascending order. 
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tests the Buffon’s needle test against Numpy matrix inversion. Results are in Figs. 3.11a 

and 3.11b. 

  These tests demonstrated varying start time dispersion of execution within the 

given namespaces. By arranging the functions by execution start time, either an 

increasing linear, positive exponential or negative exponential pattern emerges. The 

execution times of the 3rd and 4th namespace functions averaged less for the later 

starting functions than those at the beginning. 6 This suggests an availability of 

resources, even though all pods in each name-space are provided a quota to maximize 

usage. 

7 Different name-spaces will be hosted on the same server, which is a necessary 

condition for this experiment. 

 3.8.3)  Regression Development: A final filtering and extraction of name-spacing 

effects was conducted on the same data set. This attempts to mitigate the noisy signal 

of extracting times and produces a comparable value that can be developed across 

profiles of functions. A fourth-order regression of the ordered execution start times was 

taken for the extracted data. A MATLAB routine was executed to find the coefficients (a-

e) for the minimization of: 

 
6 The size of the circles are a proportional indicator of the length of function execution. The circles do 

not indicate the absolute execution time. This is done for the sake of clarity.  
7 In Kubernetes, the pod is the lowest level of run-time deployment. Any pod may have multiple 

containers, each with a separate operational environment and access identifier. They do not operate 
independently of the pod. In this experiment, there is a one-to-one correlation between containers and 
pods. However, they are not interchangeable in terminology or access to performance data.  
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  (4.1) 

 

 

Fig. 3.11 Name-space separated executions. (a) An execution timing trace for Buffon’s 
needle method in two Kubernetes name-spaces applied with two Fibonacci Sequence in 
two name-spaces. (b) An execution timing trace for Buffon’s needle method in two 
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Kubernetes name-spaces and Numpy matrix inversion in two name-spaces. The 
Kubernetes job for all functions was applied in a single command. The sample size is 100 
repetitions of the command. The vertical lines represent the average time to begin 
execution from a floor (minimum) datum taken from all repetitions. The size of the 
circle represents the average run-time for the connected function. 
 

   The coefficients were stored for the test case iterations to form a profile execution 

start time data set. Execution start time coefficients were averaged, and a standard 

deviation was found. These data points were stored for comparison against the profile 

executions of parallel functions in the four name-spaces. The curve of the regression 

marked with the mean and standard deviation provided a distinguishing characteristic. 

See Figs. 3.12a and 3.12b. 

  A parallel process was conducted for the container start time. Both sets of data 

were aligned with the data set for function execution times. No set was taken for 

container stop time, as these were largely uniform. 
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(b) 
Fig. 3.12 Regression Analysis. Average of 100 function execution times and standard 
deviation to capture the effects of functions separated across name-spaces, the 
execution start times were filtered by fourth order regression, one for each namespace 
captured by order of name-space 14.  (a) Regression analysis I. Regression analysis of 
Buffon’s needle test and Fibonacci sequence split two × two between four Kubernetes 
name-spaces. These execution match those in Fig. 3.11(a).  (b) Regression analysis II. 
Regression analysis of Buffon’s needle test and Numpy inversion split two × two 
between four Kubernetes name-spaces.  These execution match those in Fig. 3.11(b). 
The original order by scheduling was maintained and the normalized timing from the 
epoch adhered to. The size of the markers represent the length of function execution 
but are not to scale. 
 

  

E 
::, 
ro 
0 

0 
0 
c;: 
E 
_g 

C: 
C 

60 

50 

40 

~ 30 
i= 
C 
0 

5 20 
u 
X 
w 
C 
0 n 10 
C 
::, 
LL 

d, 
() 

"' C. 
<fl 
<l) 

E 
"' C: 

4th Order Regression Namespace Fluctuation 
' 1 N 
I d, 
I ~ 
I C. 

<fl 
<l) 

E 
"' I C: 

(") 

~ 
"' @-
<l) 

E 
"' C: 

0 Avg Exec lime Over 4th Order Regression 
Execution Time Standard Deviation 

o ~~~~~~~~~~~~~~~~~~~~~~~~~­

~ NMv~~~romo ~ NMv~~~romo ~ NMv~w~oomo~N 
~~~~~~~~~~ NNNNNNNNNN M MM 

Parallel Function Number (n) 



          73 

 

CHAPTER 4 

RESULTS 

4.1  Simulation Results 

   The resource management methods introduced in Paragraph 3.1.2 are 

simulated with the results shown in Table 4.1. These are outputs at the end of the 

run. For a fair comparison, all methods are running with the same maximum number 

of cloudlets available (1600) to load the VMs. Different strategies lead to their own 

migration rules, which directly influence energy consumption. Additionally, if VMs are 

assigned to different hosts or after cloudlet completion, a certain number of hosts 

will be shut down. So, energy consumption, number of migrations, and number of 

host shutdowns are chosen to illustrate the performance of different methods. 

TABLE 4.1 
SIMULATION OUTPUT COMPARISON. QUANTITATIVE RESULTS FROM VARIATIONS IN 

SIMULATION. 
 

 IQR-MU Zero-Trust Predation Altered 
Cloudlets 1600 1600 1600 1600 

Energy 
Consumed 
( MWh ) 

0.079 1.718 1.725 1.878 

Migrations 
( Million ) 

0.036 2.048 .988 1.341 

Cloudlets 
Complete 

1600 2 247 340 

Num. Host 
Shutdowns 

3240 252643 52033 12712 
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  4.1.1)  IQR-MU Simulation Results: IQR-MU is chosen from several resource 

management strategies provided by CloudSim. It serves as a baseline model whose 

results were extracted from the output methods native to the simulation, and it 

adopts methods for specific measures of risk. The minimized energy consumption, 

number of migrations, and number of host shutdowns are at the cost of a maximized 

co-resident vulnerability. These results showed that the optimization method 

sporadically lowered the number of co-resident virtual machines (1600). This was a 

result of removing virtual machines from under-utilized hosts, which at some points 

in time left a few of them alone on a host. The vast majority were shared among a 

few hosts (see Fig. 4.1 a). 

   Redistribution of VMs during the same period resulted in the fluctuation of power 

as the migration process used by the optimization algorithm re-allocated virtual 

machines. See Fig. 4.1 b. A steady and fully populated set of hosts was able to complete 

the workloads in a short time period, as will be shown in the following sections. Though 

an equal workload, the risk of co-resident attack was almost consistent throughout until 

the VMs began to shut down for job completion.



          75 

 

 

 

Fig. 4.1. IQR-MU results. (a) A the number of virtual machines which where at risk for a 
coresident attack as a result of being on shared hosts. (b) Power usage during the same 
time period. Fluctuation resulted from redistribution of VMs in optimization algorithm. 
 

  4.1.2)  The Zero Trust Model Simulation Results: The zero-trust VM selection 

algorithm found the longest-running co-resident VM for migration, while the native 

methods statistical placement policy migrated it to a different host. It has the largest 

number of migrations and the largest number of hosts involved, but it achieved the 

elimination of co-resident attacks. 

   A constant number of VMs remained on the data-center throughout the run-

time, with only those in execution drawing power. Cloudlet completion initially 

allowed the selection of a new workload from a queue of 2000 cloudlets. See Fig. 

4.2a. An accompanying trend in power consumption level, as shown in Fig. 4.2b, 

exhibited a peaked period when VMs picked up queued workload. As the workload 
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was completed and VMs dropped off activity, the number of VMs migrating began a 

downward trend (see Fig. 4.3). 

 
Fig. 4.2. Zero trust results. (a) The number of VMs and running cloudlets. Constant VM 
number greater than cloudlet number indicates inactive VMs on the data-center. (b) 
Power usage was consistent with the time period workload and host shutdown with 
inactive VMs 
 

   
Fig. 4.3. Cloudlet completion migration trends. A downward trend in migrations began 
when workload assigned to VMs completed a cloudlet 
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the data-center under the predation model. Hacker/victim  VMs translate the 

( 
  
a 
  
) 
  

(  
  
b  
  
)  
  

1600 

1550 
c' 
0 
•a 1500 
w 
~ 1450 
C 

; 1400 
> 
~ 1350 

"' ,,, 
~ 1300 

£ 
~ 1250 

~ 1200 

> 
1150 

1100 
0 0.5 

1-- VMs in execution I 

1.5 

Time (s) 

6 

2.5 X 10 

2 

(/) 1.5 
C 
0 

~ 
0) 

::a 

0.5 

2.5 3.5 

x105 

6 
x 106 

5 ......_, 

1-- Energy Expendature (W) I 

o~-~~-~--~--~--~--~--~ 
0 0.5 1.5 

Time(s) 

I---- Migrations I 

2.5 3.5 

x 105 

o ~---~--~---~---~---~---~---~ 
0 0.5 1.5 2 

Time (s) 
2.5 3 3.5 

x 105 



          77 

 

landscape to the cloud, mirroring foxes/predators and rabbits/prey. In Fig. 4.5a, a 

high degree of correlation for the time interval exists with the population. An 

expanded plateau at the peaks was a result of the dispersion of attack locations prior 

to a precipitous decline in population. The risk of predation, deaths occurring within a 

time period per number of active VMs, presents as an inverse of the population and 

power consumption. See Fig. 4.6a. Reproduction rate variations and model outputs 

are displayed with comparable L-V fluctuation in Appendix 2 and 3. 

 

 
Fig. 4.4. Population fluctuation of predator and prey within the landscape and data-
center. (a) Population of predator and prey exhibit an inverse relationship as predicted by 
Fig. 3.4 without other controls. (b) Population of predator and prey game space with 
migration of prey is triggered by locality to VM termination. 
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Fig. 4.5. Population/power correlation. Within a data-center of 576 hosts, the 
fluctuations in power generally correlated with the sum of predator and prey 
population. (a) Correlating in population varied periodically with a diminished difference 
between peaks and valleys. (b) Power usage in an altered predations model exhibited a 
similar trait. The characteristic is explained by host power requiring a ‘turn-on’ usage. 

 
Fig. 4.6. Predation risk. The risk of predation within associated time periods within the 
model. Both (a) and (b) illustrate the risk of becoming a prey within the game 
space/data-center. 
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nowhere to migrate safely. Fig. 4.5b illustrates power, and Fig. 4.6b illustrates risk. 

They also form correlated patterns. 

4.2  FaaS Data Collection Process 

   The configuration of the experimental platform reverted to a four-core, 4096-

megabyte memory Kubernetes cluster. The verbosity settings of the API server and 

scheduler were set to provide equivalent data to a FaaS customer maintaining a 

trusted profile, in accordance with the security discussion in Chapter 3. Platform data 

were extracted in the format of Fig. 4.7. 

   A selection of 5 Python functions was taken from the list of candidates based on 

their imported modules, the potential to stress specific resources in the host, and 

modularity. They were provided with input parameters tested to execute in the range 

of 0.5 seconds on a stand-alone platform (see Table 4.2). 

TABLE 4.2 
TEST FUNCTIONS 

# Image Description 
1 buffon-

test_random 
A Buffon’s needle test using the Random 
module 

2 lu-decomp A matrix inversion function using the 
lowerupper (LU) decomposition method 

3 lu-
decomp_numpy 

A matrix inversion function using the 
lowerupper (LU) decomposition 
commands in the Numpy module 

4 random-walk A random walk Monte-Carlo routine 
5 random-

walk_random 
A random walk Monte-Carlo routine using 
the Random Python module 
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Fig. 4.7: Data Extraction. A representation of data extracted from the Kubernetes 
platform executing FaaS Functions. Four namespaces separate individual user execution 
environments. Each environment runs functions in parallel, four in this representation. 
The first event to occur is the command to begin the process of managing the 
Kubernetes platform execute user functions, represented in grey, directing that the four 
parallel environment simultaneously. The scheduling process, represented in red, 
directs the pods of Kubernetes to start. Container starting processes, in green, prepare 
the execution run-time. Blue is the individual function execution. White represents the 
last timed process, the container shutdown. The pod remains on until removed by 
external commands. 
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profile 1122 would execute an LU decomposition routine in Name-space 1 and 2, and 

LU decomposition using the Numpy module in Name-space 3 and 4. 

   This selection of functions was chosen to evaluate the impact on the co-resident 

environment when the same arithmetic operations are being calculated using 

alternative routines and mixes of Python libraries. While the Buffon’s needle test only 

shared a randomizing module with random walks, they were also designed to be 

compared with random-walk that does not share these libraries.  The profiles were 

applied on the cluster in sequence from lowest order to highest order. 

   Each profile was executed with sufficient repetitions to generate a data set to 

establish profile characteristics and a test sample set. The interaction of the container 

and pod run-time with the characteristics of the arithmetic operations, as well as with 

each other, were extracted as measures of: 

•  Mean execution time for the functions in the run-time 

•  Standard Deviation for the execution time for the functions 

•  Natural log exponent of curve fit of execution times 

•  Mean of fourth-order regression coefficients of container start times for all 

iterations of the profile 

•  Standard Deviation of the fourth order regression coefficients of the above 

container start times. 

•  Mean of fourth-order regression coefficients of function execution start times 

for all iterations of the profile 
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•  Standard Deviation of the fourth-order regression coefficients of the above 

function execution start times. 

   These were extracted and saved as a comparison library. The process of 

developing the comparison library is described in Tables 4.3 through 4.5. This library was 

held as a representative of the behavior of the Kubernetes cluster executing co-resident 

functions. 

TABLE 4.3 
NAME-SPACE DATA PROCESSING AND STORAGE. EACH PROFILE OF FUNCTIONS IS 

EXECUTED ITERATIVELY TO FORM A DATA SET. FOR EXAMPLE, IF EACH NAME-SPACE IS 
EXECUTING FUNCTION ‘1’, IT WOULD BE DESIGNATED PROFILE 1111. ON THE OTHER 

HAND, IF ONE OF EACH OF FOUR FUNCTIONS ‘1’, ‘2’, ‘3’, AND ‘4’ WERE EXECUTING IN 
NAMESPACE ORDER, ITS PROFILE NUMBER WOULD BE 1234. THIS PROVIDES 44 = 256 

PROFILES OF FUNCTIONS. FOR EACH OF THE PROFILES, THE AVERAGE, µ, AND 
STANDARD DEVIATION, Σ, FOR FUNCTION EXECUTION TIME IS RECORDED. THE 

ORDERED EXECUTION TIMES ARE CURVE FITTED WITH THE EXPONENT OF THE NATURAL 
LOG, Α, WITHIN THE EACH NAMESPACE IS ALSO RECORDED. 

 Averaged Function Profile Characteristic Data Set 
Python 
Code 

Average, µ, of 
namespace (NS) 
Function Execution Time 

STD, σ, of namespace 
(NS) Function Execution 
Time 

Exponent, α, of natural 
log curve fit for 
namespace (NS) Function 
Execution Time 

Profile µ of 1st 
NS Exec 
Time 

 µ of 4th 
NS Exec 
Time 

σ of 1st 

NS Exec 
Time 

 σ of 4th 

NS Exec 
Time 

α of 1st 

NS Exec 
Time 

 α of 4th NS 
Exec Time 

1111 µ1111, T1  µ1111, T4 σ1111, T5  σ1111, T8 α1111, T9  α1111, T12 
1112 µ1112, T1  µ1112, T4 σ1112, T5  σ1112, T8 α1112, T9  α1112, T12 
↑↑ 
256 
Profiles 
↓↓ 

         

4444 µ4444, T1  µ4444, T4 σ4444, T5  σ4444, T8 α4444, T9  α4444, T12 
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  The mean for fourth-order regression (see Fig. 3.12.) of container start times, as 

well as their standard deviations, are found for the many runs. These are aligned with 

the function execution time mean and standard deviations in Table 4.3 and placed into a 

tabular form below. A final data set was taken for the function execution start times as 

in Table 4.5. 

 4.2.2)  Test Set Data Extraction: A second set of data was extracted in the same 

format at a ratio of one to two. These were processed in the same format and arranged 

for threat evaluation. These serve as a test set representing information obtained by 

users attempting to infer co-resident data leakage. 

TABLE 4.4 
CONTAINER START TIMES DATA PROCESSING AND STORAGE. CONTAINER START TIMES 
SERVED AS THE SECOND EVALUATION PARAMETER. THESE WERE COLLECTED FOR EACH 

CONTAINER, ON A ONE TO ONE BASIS, FROM EACH POD. THESE TIMES WHERE 
EXTRACTED USING THE KUBERNETES «INSPECT» COMMAND AND MAINTAINED THE 

ORDER OF THE SCHEDULING WITHIN EACH NAMESPACE. THESE TIMES WERE FILTERED 
THROUGH A FOURTH ORDER REGRESSION PROCESS IN ORDER TO CAPTURE THE 

EFFECTS OF SEPARATION BY THE FOUR NAMESPACES. THE COEFFICIENTS FOR EACH 
ORDER OF THE REGRESSION, C4-C0, ARE RECORDED. AN AVERAGE WAS TAKEN ACROSS 
THE ITERATIONS ALONG WITH THE STANDARD DEVIATION FOR THE AVERAGES. THESE 

WERE ORDERED IN THE MANNER BELOW. 
 Averaged /Standard Deviation Function Regression Values 
Python 
Code 

4th Order Regression Means µ of 
Container Start Times 

4th Order Regression STD’s σ of 
Container Start Times 

Profile µ of 4th 

Order 
Coefficients 

 µ of 0th 

Order 
Coefficients 

σ of 4th Order 
Coefficients 

 σ of 0th Order 
Coefficients 

1111 µ1111, C4  µ1111, C0 σ1111, C4  σ1111, C0 
1112 µ1112, C4  µ1112, C0 σ1112, C4  σ1112, C0 
↑↑ 
256 
Profiles
↓↓ 

          

4444 µ4444, C4  µ4444, C0 σ4444, C4  σ4444, C0 
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TABLE 4.5 
EXECUTION START TIMES PROCESSING AND STORAGE. EXECUTION START TIMES SERVED 

AS THE THIRD EVALUATION PARAMETER. THESE WERE COLLECTED FOR EACH 
FUNCTION. THESE TIMES WHERE EXTRACTED USING THE KUBERNETES «LOGS» 
COMMAND AND MAINTAINED THE ORDER OF THE SCHEDULING WITHIN EACH 

NAMESPACE. THESE TIMES WERE FILTERED THROUGH A FOURTH ORDER REGRESSION 
PROCESS IN ORDER TO CAPTURE THE EFFECTS OF SEPARATION BY THE FOUR 

NAMESPACES. THE COEFFICIENTS FOR EACH ORDER OF THE REGRESSION, K4-K0, ARE 
RECORDED. AN AVERAGE WAS TAKEN ACROSS THE ITERATIONS ALONG WITH THE 

STANDARD DEVIATION FOR THE AVERAGES. THESE WERE ORDERED IN THE MANNER 
BELOW. 

 Averaged /Standard Deviation Function Regression Values 
Python 
Code 

4th Order Regression Means µ 
of Container Start Times 

4th Order Regression STD’s σ of Container 
Start Times 

Profile µ of 4th 

Order 
Coefficients 

 µ of 0th 

Order 
 Term 

σ of 4th 

Order 
Coefficients 

 σ of 0th Order  Term 

1111 µ1111, K4  µ1111, K0 σ1111, K4  σ1111, K0 
1112 µ1112, K4  µ1112, K0 σ1112, K4  σ1112, K0 
↑↑ 
256 
Profiles
↓↓ 

      

4444 µ4444, K4  µ4444, K0 σ4444, K4  σ4444, K0 
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TABLE 4.6 
TEST CASE FUNCTION EXECUTION TIMES 

 Averaged Function Profile Characteristic Data Set 
Python 
Code 

Average,  µ,  of 
namespace  (ns) 
Function Execution Time 

STD, σ, of namespace 
(ns) Function Execution 
Time 

Exponent, α, of 
natural log curve fit 
for namespace (ns) 
Function Execution 
Time 

Profile µ of 1st ns 
Exec 
Time 

     µ of 4th 

ns Exec 
Time 

σ of 1st ns 
Exec 
Time 

     σ of 4th 

ns Exec 
Time 

α of 1st ns 
Exec 
Time 

     α of 
4th 

ns 
Exec 
Time 

???? µ????, ns1  µ????, ns4 σ????, ns1  σ????, ns4 α????, ns1  α????, 
ns4 

↑↑ 
18/256 
Profiles ↓↓ 

                     

???? µ????, ns1  µ????, ns4 σ????, ns1  σ????, ns4 α????, ns1  α????, 
ns4 

 
TABLE 4.7 

TEST CASE CONTAINER START TIMES 
 Averaged /Standard Deviation Function Regression Values 
Python 
Code 

4th Order Regression Means µ of 
Container Start Times 

4th Order Regression STD’s σ of 
Container Start Times 

Profile µ of 4th Order 
Coefficients 

 µ of 0th 

Order 
Coefficients 

σ of 4th Order 
Coefficients 

 σ of 0th 

Order 
Coefficients 

???? µ1111, c4  µ????, c0 σ????, c4  σ????, c0 
↑↑ 
18/256 
Profiles 
↓↓ 

      

???? µ????, c4  µ????, c0 σ????, c4  σ????, c0 
 

  4.2.3)  Experiment Comparison Process: The evaluation of a co-resident threat treats 

timing data of a multi-function parallel FaaS application as an ensemble signal. The 
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component timing data of the ensemble is considered sequentially by determining at 

which interval a group of test case profiles has a similarity score calculated to be the 

characteristic of the candidates that the attacker wishes to discover about the target 

user. 

   A collection of these functions matching the activity of the target user will allow 

the attacker to infer that the target is using. The evaluation framework follows a 

Bayesian model to match the normal distribution and adopts a normalizing feature to 

compare the characteristic parameters that they are able to extract from the co-

resident platform. A product aggregate of these factors establishes a density of profiles 

from which to infer similarity. 

TABLE 4.8 
TEST CASE EXECUTION START TIMES 

 Averaged /Standard Deviation Function Regression Values 
Python Code 4th Order Regression Means µ of 

Container Start Times 
4th Order Regression STD’s σ of 
Container Start Times 

Profile µ of 4th Order 
Coefficients 

     µ of 0th 

Order 
Term 

σ of 4th Order 
Coefficients 

     σ of 
0th 

Order 
Term 

???? µ????, κ4      µ????, κ0 σ????, κ4      σ????, 
κ0 

↑↑ 18/256 
Profiles ↓↓ 

                              

???? µ????, κ4      µ????, κ0 σ????, κ4      σ????, 
κ0 

 

  Because there is a wide range of possible profiles that the target can adopt, and the 

event of a matching profile matches only one of the many orchestrated functions 

sequentially executing in the co-resident environment, a method was necessary to test 

results in mass. A product aggregate of these factors establishes a density of profiles 
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from which to infer data leakage. A high-density plot of matching profiles will stand out 

and be considered accurate if low in the range of possible differences. 

   From the Nn possible profiles from the N number of equations on n name-spaces a 

random sample set was taken to test for profile identification leakage. The number of 

test profiles was calculated to keep the probability of a repeated profile below 50% by 

Equation 4.1. For a test set of 256, or 44, profiles, this was 18 test cases, each selected at 

random from the test set. 

.5 = (1−1/N)×(1−2/N)× ... ×(1−ν/N) (4.1) 

  A normalized scalar similarity score for the test case was determined for each entry 

in the profile library by equation 4.2. These were ordered and aligned with the profile 

number. An absolute value and logarithmic (base 10) value were taken for each 

similarity score (see Fig. 4.8). A similarity score close to zero provided an indication 

that the test profile revealed information about the co-resident workload executing 

on the platform. An accuracy score was calculated through the indexed separation 

from the test profile to the profile that had a similarity score closest to zero. See the 

caption of Fig. 4.8. 

∆𝑖𝑖= ∏ 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑖𝑖,𝑛𝑛

12
𝑛𝑛=1 × ∏ 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐶𝐶𝑖𝑖,𝑛𝑛
10
𝑛𝑛=1 × ∏ 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐾𝐾𝑖𝑖,𝑛𝑛
10
𝑛𝑛=1    (4.2) 

 
  A measurement of how far from 0 the sample value was counted from the results of 

the normalization process. This value was stored as a ratio and rendered as above or 

below. The process was repeated for thirty random profile selections. 
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TABLE 4.9 
NOTATION FOR TERMS IN SIMILARITY ALGORITHM. TERMS ARE EXTRACTED FROM 
TABLES 4.3, 4.4 , AND 4.5 IN HIERARCHICAL ORDER. SUBSCRIPTS FOLLOW A ROW, 

COLUMN FORMAT WHERE PRESENT. 
Term Name Symbol Description. 
Similarity score ∆1 Term expressing the calculated closeness of similarity 

of the tested profile to the candidate profile i. 
Test Case Execution 
Value 

τ test,n Term from tested function profile index from n = 1-12 

Library Candidate 
Execution Time Value 

Ti, n Term from candidate function, profile i = 1-256, index 
from n = 1-12 

Test Case Container 
Start Value 

ctest,n Term from tested function profile index from n = 1-8 

Library Candidate Value Ci, n Term from candidate function, profile i = 1-256, index 
from n = 1-8 

Test Case Execution 
Start Value 

κj Term from tested function profile index from j = 1-8 

Library Candidate Value Ki, n Term from candidate function, profile i = 1-256, index 
from n = 1-8 

 
 4.2.4)  Comparison Results: Of the 18 samples tested, 4 had a similarity index that 

brought them outside of 2 orders of magnitude separate from the normal. That is, the 

result of the normalization and scalar process provided the sample test profile with a 

score of between 0.01 and 100. The numerical distance of ordered calculation results 

was, on average, 10 percent of the range of candidate profiles. That is, 90% of the 

possible profiles could be eliminated from consideration. 
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Fig. 4.8: Similarity Scores. Similarity Scores. An ordered list of the similarly scores 
represented as logarithms (base 10) of the absolute values of the Equations 4.2. The list 
is about the ideal normalized result, 10 on each side, of zero. The randomly selected 
profile for this test was 1333, with an evaluated similarity score of -0.14142. This 
profiles separation from the ideal 0 was two places; 1 for profile 1233 and 2 to achieve 
zero. A reflective value was also found for the inverse of the logarithmic value, which 
added three places of separation from the ideal result: 1 for profile 2122, 2 for profile 
2244, and three for profile 1331. This provided a error score of 2 + 3 = 5, or 5/256 = 
.0195. This is about a 2 percent degree of error. 
  

Similarity Profile ID 
Score Number 

-0.36992 121.i:1 

-0.35388 1324 

-0.31255 1323 

-0.27081 2123 

-0.21667 1123 

-0.17214 2241 

-0.16426 1113 

-0.14142 1333 

-0.11557 1233 

0.014799 2122 

0.045955 224.i:l 

0.132689 1331 

0.266137 2234 

0.35248 2243 

0.381738 2242 

0.3910311 1111 

0.485479 1112 

0.538096 1114 

1.1377011 1121 

1.193366 1122 
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   A second test was conducted for the remainder of the five functions using the 

random Python library. Of the 625 profiles developed, only 339 had a complete set of 

data to evaluate. A minor extraction error occurred in data-set faulted the evaluation 

routine. The process to remedy the change would only be applicable to one of the 

final test sets. Of the twenty-five samples tested, 4 had a similarity index that brought 

them outside of 2 orders of magnitude separate from the normal. That is, the result 

of the normalization and scalar process provided the sample test profile with a score 

of between 0.01 and 100. The numerical distance of ordered calculation results was, 

on average, 20% of the range of candidate profiles. That is, 80% of the possible 

profiles could be eliminated from consideration. 

4.3  Parallelism Expansion 

   In an attempt to align container creation with the timing of resident code 

execution, the namespace parallelism doubled. This was accomplished through finer-

grained parsing and division of resources. Two attempts were made to increase the 

parallelism of the platform. The first was to increase the number of functions running 

in a name-space four-fold from 16 to 24. This leads to lag beyond the ability to 

reasonably obtain results. 



          91 

 

 
Fig. 4.9: Test case I correlation density. A graphical depiction of offset from success in 
finding the true fingerprinted function profile. In 18 tests, the algorithm to predict the 
exact function profile was executed. The characteristic parameters of the test function 
were compared to the fingerprints of all 256 function profiles. Each of these was given a 
similarity score, and ordered. The predicted identity of the fingerprinted profile was 
compared given the score. These were arranged from lowest to highest. Densities of 
these offsets are depicted in this Fig.. Of the 18 tests 9 were in the 10 percent range and 
3 more within the 20 % range. These were represented as red at the bottom of the Fig. 
 
   The second test was conducted with parallelism of 32 functions per name-

space. The result of the high degree of parallelism was an uneven dispersal of pod 

scheduling, container start, and function execution (see Fig. 4.11). Execution time 

notably increased, and container start time increased dramatically. A trend arose that 

demonstrated latency in container scheduling for the last name-space in the 

configuring YAML file, mitigating the advantage of having that information provided 

in co-resident tests. Finally, the API server began to lose the ability to extract 
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information about halfway through the test, and a complete comparison could not be 

undertaken. 

 
Fig. 4.10: Test case II correlation density. A graphical depiction of offset from success in 
finding the true fingerprinted function profile. In 25 tests, the algorithm to predict the 
exact function profile was executed. The characteristic parameters of the test function 
were compared to the fingerprints of all 339 function profiles. Each of these was given a 
similarity score, from 1-339. The predicted identity of the fingerprinted profile was 
compared given the score. These were arranged from lowest to highest, with an exact 
match having a similarity score of 1. This is represented at the bottom of the Fig.. The 
offset from one for predictions were found with a simple difference and arranged from 
lowest to highest. The densities of these offsets are depicted in this Fig.. 
 
4.4  Test Cases of Co-Resident Parallel Function Data Leakage 

   As a balance, the Minikube configuration was increased by an additional CPU and a 

quarter again of the memory. The parallelism in the name-space was dropped from 32 

to 16. Finally, candidate functions were increased from four to sixteen as described in 

Table 3.6, with each having at least one alternative algorithm or library structure except 
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the Fibonacci sequence and the twin primes finder. These were split out among three 

different test machines with the same architecture and resources. These resulted in a 

distinctly different pattern of run-time segments (see Fig. 4.12). 

 

 

 

Fig. 4.11: High parallelism execution. An even split of name-space utilization in high 
parallelism (32 individual executions in four name-spaces) on the Kubernetes cluster. 
The first two name-spaces were assigned Monte-Carlo methods (Buffon’s needle test). 
The second two namespaces, on the right of each Fig., had (a-d) Buffon’s needle test, 
floating point division, Fibonacci sequence, Numpy matrix inversion. 
 
   Just as with the test with 32 parallel functions, the Kubernetes system began to 

suffer data loss. While scheduling information would fail to emerge in the 32 parallel 
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system, these tests lost execution time data. However, the distribution of run-times 

and execution times was revealing of the capacity for co-residence. A test of whether 

this could be controlled was ingrained in the final development for co-resident data 

leakage in the platform. The results are in the final chapter. 

 

 
Fig. 4.12: Test set data collection. 16 functions running in parallel from a Kubernetes job 
file. (a) is a uniform function, buffon-test-numpy, across all four name spaces, and (b) is 
a profile of 1. buffon-test-numpy, 2. buffon-test-piest, 3. division-test-math, 4. division-
test-numpy. (c) is a uniform function, comp-fact, across all name-spaces and (d) is a 
profile of 1. comp-fact, 2. fibonacci, 3. lu-decomp-numpy, 4. random-walk. 
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CHAPTER 5 

DISCUSSIONS AND CONCLUSIONS CHAPTER 5 

 

5.1  Challenges 

   Although a game-theory model of security in the FaaS environment is 

dependent on a near infinite range of variables, the options available to any given 

user of the platform are not. They are limited by the ability to transition from the 

traditional IaaS, PaaS, and SaaS cloud offerings. They are also limited by their business 

model’s applicability to FaaS platform. 

 5.1.1)  Applying Game Theory Elements: To apply the game theory model, a 

strategic relationship must exist. That is, a player must be able to influence the other 

player’s options and vice-versa. Implemented in a cloud security environment, this is 

expressed as a resource contention through variations of execution timing. By 

observing the effects of this contention on their environment, a player learns 

something about their opponent. 

   Considering these two factors, a test was performed to assess whether a 

potential scientifically or financially based user may encounter an adversary seeking 

to gain knowledge of their activities. This was conducted with representative 

workloads on a platform characteristic of FaaS environments. Obtaining and properly 

interpreting the results of the test was the chief obstacle to this process. The goal of 

these tests was to determine whether a strategic relationship sufficient to apply game 

theory exists. 
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  5.1.2)  Analysis: Over an equal length of time, the native, zero-trust, and two game 

theory models were compared on representative runs. Detailed numeric results are 

displayed in Table 4.1. These show a range of measurable security characteristics that 

influence system performance. 

   The IQR-MU and Zero-Trust are two extreme methods: IQR-MU’s singular 

purpose of optimization without security consideration at the boundary of strategy. 

Squeezing as many VMs as possible in the least number of hosts consumes the least 

energy and has the least number of host shutdowns. Adjacently, the zero-trust 

method is an upper bound of rationality being purely deterministic. This leads to the 

highest number of migrations and utilizes the largest number of hosts. The predation 

method’s zero-sum characteristic borders the payoff characteristic at the extreme of 

utility. 

   While the rules governing interaction can be adjusted within this range, those of 

the individual players in Table 5.1 which specifies VM parameters, do not change. This 

is exemplified in Appendices C.1 and C.2. In contrast, the altered predation model 

modified the characteristic VM interaction between hackers and victims as a means 

to influence the security resulting from migration. 
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TABLE 5.1 

PREDATION SIMULATION SYSTEM PARAMETERS. INPUT PARAMETERS FOR THE SPECIES 
MODELED IN SIMULATION 

Parameters  Value Chosen 
Game Space No. of Hosts  48×48 

24×24 D/C  576 
Max Population (Total VMs) Predator 
(Malicious VMs) 

 1600 

Initial Creation Probability  0.0189 
Breeding Probability Prey (Benign VMs)  0.022245 

Initial Creation Probability  0.6725 
Breeding Probability  0.022245 
Breeding Age  5 time steps 
Max Age  100 time 

steps 
Total Run Time ( sec )   
24×60×60×3.5  302400 

 

   In the altered predation model, an increase in the number of complete cloudlets 

from the baseline predation model demonstrated an improvement in performance. 

This, however, came at the cost of migration and consumption of more energy due to 

reduced host shutdown. However, the trend in risk due to predation over the entire 

period (see Fig. 4.6b.) was about half of that in the baseline predation model (see Fig. 

4.6a). This demonstrates the hypothesis that the trade-offs necessary for scoring in 

game theory can be obtained from simulation. 

   A workload delay analysis shows that a narrow range of cloudlet workloads 

incur a smaller cost in delay. The number of cloudlets taking a higher delay shows a 

very uneven distribution of the risks associated with a pure predation method (see 
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Fig. 5.1). While the altered game evens this out over the higher delay, the shorter 

delays are distributed over a much smaller selection of cloudlets. 

Fig. 5.1: Cloudlet completion delays. Left: Histogram of the number of cloudlets 
experiencing the number of periods with a delay. Right: A histogram of the altered 

predation model delays. Both are long tailed indicating an uneven cost in delay. 
However the narrower range of delay in the altered theory indicates the selective 

nature of the attack. 
 

TABLE 5.2 
SIMULATION OUTPUT COMPARISON. A DATA-CENTER WIDE AGGREGATED 

PERFORMANCE FOR MODEL VARIATIONS. 
 IQR-MU Zero-Trust Predation Altered 
Cloudlets 1600 1600 1600 1600 

Energy Consumed 
(MWh ) 

0.079 1.718 1.725 1.878 

Migrations 
(Million ) 

0.036 2.048 .988 1.341 

Cloudlets 
Complete 

1600 2 247 340 

Num. Host 
Shutdowns 

3240 252643 52033 12712 
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5.2  Data Sets 

   Three test sets followed the experimental procedure of Chapter 3.1.2. These 

were executed on the same platform from a selection of functions in Table 3.6. The 

tested data files were profiled for four test functions, each with a different set from 

the candidate functions. Data collection and processing procedures were conducted 

without alteration. 

  5.2.1)  Test Case I: The first test case was performed on a subset of the candidate 

functions using the input parameters specified.  These were: 

•  Buffon’s Needle Test, Numpy 

•  Buffon’s Needle Test, Taylor Series Pi Est. 

•  Floating Point Division, Math 

•  Floating Point Division, Numpy 

  The results of the test showed a multi-modal density plot for successful co-

resident data leakage (see Fig. 5.2). These results indicate that between 3 and 4 

profiles were in the upper 10 percent of correct determinations (eliminating 172 of 

the 191 possible function profiles that the target user could be using). Another 

grouping of 5 to 6 were found in the 35 % range (eliminating only about 120 possible 

profiles). Finally, the greatest grouping of about profiles appeared at an error rate of 

70%, eliminating only 60 possible profiles from the possible 190. 

   These results indicated a successful information leakage was much less likely 

than in the validating model. Although no identifying features could be discerned 

from the input data, possible alignment of similar routine types could suggest an 
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obscuring factor. Similar circumstances could come into play with the multiple uses of 

Numpy modules. 

Fig. 5.2: Test Case 1. A density plot of difference between the correct determination of 
co-resident information. A higher density, displayed in red, closer to the bottom 
indicates a successful co-resident data leakage. A high density closer to the top indicates 
that the process of identifying co-resident functions in parallel execution failed. Density 
of results is indicated by the color of scale on the right. 
 
  5.2.2)  Test Case II: The second test case was performed on a subset of the candidate 

functions, also taken from the candidate function list. These functions used none of the 

same libraries or sub-routines. They are: 

•  Buffon’s Needle Test, Random 

•  LU Decomposition 

•  LU Decomposition, Numpy 
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•  Random Walk 

   This test case showed a higher degree of agreement in the test case match with 

the function library (see Fig. 5.3). Here, between 14 and 16 of the 20 test cases were 

in the range of 20 candidate functions from the possible 256. This eliminated 

approximately 90% of the candidate profiles from the pool of victim processes. 

 
Fig. 5.3: Test Case 2. 

 
  5.2.3)  Test Case III: The third test case was performed on a subset of the candidate 

functions that used none of the same libraries or sub-routines. This is done in 

comparison with the previous test set on two of the four functions: 

•  Computation of a Factorial 

•  Fibonacci Sequence 
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•  LU Decomposition, Numpy 

•  Random Walk 
 

 
Fig. 5.4: Test Case 3. 

 
5.3  Findings 

   Within a very narrow range of conditions, a co-resident strategic relationship could 

be established in an adversarial aspect. Provided the ability to obtain measures of how 

each user influenced the behavior of an adversary FaaS execution, a sifting process 

exposes execution timing to leak information. The relationship would be mutually risky 

for both parties and not definitive as to the exact computational processes being 

undertaken. 
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   The degree of parallelism had a profound effect on the ability to conduct such a 

game. The configuration of the host environment, choice of input parameters, and 

allocation of resources could readily interfere with the ability to conduct such an 

attack. The degree of parallelism under these conditions greatly skewed the ability to 

retrieve and interpret this data. 

   Alternatively, the data also shows that the diffusion of function execution within 

a namespace, under the conditions above, reduces the risk of co-residence. Assuming 

that a co-resident, simultaneous execution of code on a host, is a prerequisite for an 

attack, these conditions may provide an adequate basis to prevent the threat. The 

factors that cause such dispersion, including library choice, function input 

parameters, and parallelism, are all under the control of the user. 

   Within limits, this can form the basis of a mitigation to co-resident threats. 

While the platform may suffer from slowdown, risk DoS, or limited data availability, it 

is the scalability that makes FaaS a viable model in the first place. This is, therefore, a 

consideration of the provider to incorporate into their load balancing and scaling. 

5.4  Module Effects on Resource Utilization 

   The functions were provided parameters and executed in parallel, such as to 

maximize the resource consumption of the computer platform. In this manner, the 

approach of the experiment was a bin-packing problem. The scheduling times, 

container start times, function execution start and finish times, and finally, container 

stop were recorded in order to characterize correlated resource contention effects on 

the distribution of these times. 
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   Upon preliminary tests of the experiment, it was apparent that some data 

points exposed prominence from an aspect of execution timing that could skew the 

analysis to overcome the sought-after relationship. Some functions had execution 

times that revealed which profile of code was executed in parallel without 

considering the resource contention being tested (see Fig. 5.5). A reversal of the 

order of the profile exposed the same effect. 

   Notable in this finding is the apparent effect of including certain Python 

modules. The Fibonacci sequence in both examples of Fig. 5.5 completes every 

parallel execution before the first and second functions are started. Each of the first 

two includes an additional module, Random for the Buffon’s needle test and Math for 

the floating point division. The matrix inversion routine includes the Numpy module. 

   The effect of these variations is that no two sets of parallel functions are 

executing at the same time on the platform. The Buffon’s needle test and FPD have 

the closest correlation, but in both forward and backward order their actual co-

resident execution time is less than 0.5 seconds per function. This suggests that 

information leakage is too problematic, assuming that a method to overcome the 

container isolation can be developed. Therefore, it is possible to mitigate some co-

resident data leakage attacks by the judicious distribution of functions based on their 

composite libraries. 



          105 

 

 

Fig. 5.5: Module selection effects. A parallel execution of mirror profiles of candidate 
functions: from left to right in (a) Buffon’s needle test, floating point division, 
Fibonacci sequence, Numpy matrix inversion. In (b) Numpy matrix inversion, 
Fibonacci sequence, floating point division, Buffon’s needle test. 
 
5.5  Further Study 

   The single host environment in which this experiment took place forced co-

residence on the pods and containers that were tested. While this may favor the 

analysis of information leakage over Kubernetes in a cluster, other factors intervene. 

The Pods on a Kubernetes cluster are not limited to a single container. In fact, the 

presence of a sidecar container is common for the separation of functionality in most 

applications. 

   In addition, the requirement to include functionality other than the algorithmic 

logic is part of most applications. This can take the form of databases, webhooks, and 

parallel logic. In a FaaS environment, this may be necessary to make up for the lack of 

state and synchronization. An orchestrated application will have this as an inherent 

component. 
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   So, though the ability to gain co-residence in a FaaS Kubernetes environment 

may be diminished in a multi-host cluster, it may be increased as well due to both 

scaling and workflow. Testing these effects will be an important test of whether co-

resident attacks can reveal more about the activities of other cloud users and 

whether there is a strategic model for FaaS computer security. 
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APPENDIX A 

GAME THEORY FUNDAMENTALS 

  Game theory is a branch of applied math that analyzes interactive relationships 

between at least two parties, each with established preferences over outcomes [164]. It 

has found application in politics, gambling, biology, and economics. Game theory’s link 

with economics is well established defining balance points, called equilibrium, strategic 

relationships, where an agent’s actions have effects on others, and limited resources. 

 Holding to many principles for various strategic circumstances, the ‘games’ in game 

theory do not necessarily exemplify sports or board games. They are not capable of 

informing a player what they should or should not want. Nor are they capable of 

providing options or moves which were not previously existent in the game space. It is 

also quite possible that if each player follows the tenets of the game theory, they will 

both reach inefficient outcomes [165]. 

  The theory does, however, provide insight into the evaluation of agent objectives, 

utility quantification, and strategy profiles in a number of single-move and multi-move 

adversarial and cooperative interactions. In addition to adopting a specific vocabulary, it 

can deliver non-intuitive results. It has found application in several aspects of the cloud. 

A.1.  Traditional Game Theory 

  Game theory is an economic model applied to (1) strategy selection of (2) two or 

more players gaining some (3) utility in the form of quantifiable payoffs (see Table A.1). 

These three features imply competing interests for each rational entity seeking the 



          124 

 

highest utility, given the common knowledge of the strategies of the other player. They 

do not, however, imply complete knowledge. 

  Within game theory, players must avoid a dominated strategy. This is a strategy that 

leads to worse outcomes for that player than other available strategies, regardless of 

the strategy selected by another player/agent. In the traditional model, strategy is 

selected based on the concept of common knowledge: recursive shared knowledge ad 

infinitum. 

TABLE A.1 
GAME THEORY COMPONENTS 

Component Element Explanation 
Players Rationality A player operates in his or her best 

interests. 
Strategies Inter-

dependence 
What one player does effects the 
outcomes of another player. 

Pay-offs Utility Established by the utility function 
which assigns a numeric value to 
actions. 

 
  A.1.1)  Game Theory in the Normal Form: As a central feature, game theory 

researchers seek a game’s Nash equilibrium. This condition provides that no player, in 

this case, a cloud user, has an incentive to alter their behavior, given what the other 

user is doing. This concept can be applied in both a single-move game and in extended 

form games (covered in Section A.1.3). 

  The concept of a Nash equilibrium can be demonstrated by a pure strategy selected 

from the scoring in a normal-form game (see Fig. A.1a). This game is called the prisoners 

dilemma. The upper-left block (scored as -3,-3) is a Nash equilibrium: The vertical player 

is unable to unilaterally improve his score by moving down, while the horizontal player 
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is unable to unilaterally improve her score by moving right. However, if both were able 

to cooperate and change their strategy simultaneously, they could achieve the more 

efficient score -2,-2) at the upper left, which is not a Nash Equilibrium. So, a Nash 

equilibrium can lead to inefficient outcomes. 

  Alternatively, a game may have multiple Nash equilibrium. In the stag hunt game (see 

Fig. A.1b.), the players can play Stag-Stag or Hare-Hare to achieve a Nash equilibrium. 

Less obvious is the third equilibrium which results from playing a probabilistic 

distribution of strategies (see Section A.11). 

 
Fig. A.1.  Nash equilibrium examples.  Players’ are represented on the vertical and 
horizontal axes. By convention, the strategy profile and scores for player are positioned 
in the coordinate box as an ordered pair. The left number of the ordered pair is assigned 
to the vertical player and the second number is assigned to the vertical player. These 
numbers represent the utility for the coordinate strategy profile. a. A game with a single 
pure strategy Nash equilibrium (The prisoner’s dilemma). Preferences over outcomes 
dictates that negative scoring is better for an agent closer to zero. Neither player is 
unilaterally able to improve from Defect-Defect. b. A multiple Nash equilibrium game. 
The stag hunt is an example of a game with more than one Nash equilibrium. The 
strategies of Stag-Stag as well as the Hare-Hare are both Nash equilibrium. A third 
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equilibrium in mixed strategies (see Appendix A.3) preserves the lemma that an odd 
number of Nash equilibrium are required. 
 
  A.1.2)  Limits of Game Theory:  The ability to decide on a pure or mixed strategy is 

subject to gaming in cloud security based on the actual value of any pay-off. While the 

scoring is dynamic and provided on the basis of cloud customer behavior, profile, or 

trends, these are subject to manipulation, obscuring, or malformation, often based on a 

central tenet of the game theory the concept of common knowledge. 

  Common knowledge, which forms the idea of each player being able to place 

themselves in each other’s shoes, is reciprocated ad infinitum. It presents a cyclic basis 

for inference about the best strategies of each player and provides an incentive to alter 

beliefs. It is a subtle and permeating concept in extensive form games. These are 

covered in Sections A.1.3 and A.4. The lack of reliability of such scoring and strategic 

details in numeric scoring is suggested in related literature [60]. 

  Lacking such measures of utility is an obstacle to adapting the classical game theory 

methods. While the number of possible strategies of players may be immense, without 

scoring, the iterated elimination of dominated strategies (IEDS) used to reduce the 

normal form is not possible. In non-cooperative games, it would be irrational to identify 

opponents. 

  A.1.3)  Extended Game Theory: The game theory models presented above represent 

the normal form of simultaneous move games. In this model, players execute their 

moves at the same time, much like a game of paper-rock-scissors (see Fig. A.2). Neither 

player has a strategy that dominates nor is dominated, as the options are circular in 
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precedence (see Fig. A.2(a). Furthermore, the game is symmetrical in payoffs across the 

draws on the diagonal (see Fig. A.2(b). 

 

Fig. A.2 Paper-Rock-Scissors.  (a) The paper-rock-scissors strategies available for players 
one and two. These strategies are executed simultaneously, generally on a count of 
three. (b) The pay-offs of paper-rock-scissors in the normal form. These provide for a 
victory, loss, or draw for players one and two. Note, neither player has a dominate 
strategy. 
 
  Alternatively, a game can be expressed in the extended form. Rather than a tabular 

format, the strategies and payoffs are presented on a directed acyclic graph (DAG) (see 

Fig. A.3). In the case of the paper-rock-scissors game, it is still a simultaneous move 

game. The vertical dashed line relays this characteristic. Games with sequential moves 

are covered in Section A.4, Sub-Game Perfect Equilibrium and Creditable Threats. 

( a ) (  b  )  
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Fig. A.3: Paper-Rock-Scissors extended form. The paper-rock-scissors expressed in the 
extended form occurs on a directed acyclic graph. Note that the dashed line indicates a 
lack of knowledge by player two as to which node she is at. Nodes are numbered by the 
player making a move, strategies are denoted by the edges of the graph. Note, the 
normal form game may be developed from an extended form game, but not vice-versa. 
 
A.2.  Best Responses and the Nash Equilibrium 

  The Nash equilibrium can be described in several ways. One is the normal form 

format that fits the description that no player is able to unilaterally deviate from their 

current strategy and do better. Another is to say that a Nash equilibrium is a law that 

everyone would follow, even in the absence of an effective police force. This is in 

contradiction to that description that would make the prisoner’s dilemma in Fig. A.1a 

(see also Appendix F.2.2) an effective model. The final definitions were that an Nash 

equilibrium was a mutual best response. This section will develop the process, and 

define the alternative for when the test fails. 
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  A.2.1)  Game Description:  In this game two craftsmen must make a simultaneous 

decision upon what tools they are going to buy. They are in an economy with a limited 

amount of wood, steel, and brass. Also, the two products that they can make are either 

a hinge or a latch. The constraints upon the use and availability of materials and 

capability to manufacture are: 

Production of a hinge requires the ability to remove metal. The 

production of a latch requires the ability to shape metal. Neither the drill nor the 

welder require the use of wood to construct them. But they both require brass 

to construct. The hammer and the file both require wood to construct, but the 

hammer requires more of both, leaving the more malleable brass as the 

dominant material. Due to the available of materials and manufacturing 

processes, there are limited choices in what can be manufactured and 

constraints on profits. They are found in the pay-off matrix A.4. 

  A.2.2)  Evaluation for Dominated Strategies: An examination of the pay-off matrix 

reveals that there are no dominant strategies. Neither the craftsmen number 1 nor 

craftsman number two have a strategy where they are able to do better, regardless of 

the strategy the opposing craftsman plays. There are further, no pure strategy Nash 

equilibrium. 

  A.2.2.1)  Craftsman 1: 

  If Craftsman 2 plays Hammer (Purchases a Hammer), the scores for Craftsman 1 are 

as on Table A.2. 
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TABLE A.2 
PAY-OFFS, CRAFTSMAN 1 WITH THE PURCHASE OF A HAMMER BY CRAFTSMAN 2. 

 Hammer 
File 5,- 
Welder -2,- 

 

 

Fig. A.4: Mixed strategy Nash equilibrium. A game requiring a mixed strategy Nash 
equilibrium. 
 
Likewise, if Craftsman 2 plays Drill (Purchases a drill), the scores for Craftsman 1 are as 

in Table A.3. 
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TABLE A.3 
PAY-OFFS, CRAFTSMAN 1 WITH THE PURCHASE OF A DRILL BY CRAFTSMAN 2 

 Drill 
File -3,- 
Welder 1,- 

 
  Notice that the scores of the Craftsman 2 are not considered in this analysis. They are 

left with a blank (-), as the test for dominance only considers the player that is testing if 

they have a dominant strategy. The implications for Craftsman 1 are that if Craftsman 2 

plays hammer, File beats Welder. But if Craftsman 2 plays Drill, Welder beats File. It is 

not necessary that the absolute pay-off beat the pay-off for the other strategy for both 

of the opposing player’s strategy. -2 beats -3 for Craftsman 2 playing Hammer and Drill 

respectively. So, for Craftsman 1, the pay-off of strategy depends on the strategy that 

Craftsman 2 plays.  Neither of the strategies dominates the other. 

   A.2.2.2)  Craftsman 2: Conducting the same analysis, if Craftsman 1 plays File 

(Purchases a File ), the scores for Craftsman 2 are as in Table A.4: 

TABLE A.4 
PAY-OFFS, CRAFTSMAN 2 WITH THE PURCHASE OF A FILE BY CRAFTSMAN 1 

 Hammer Drill 
File -,-5 - , 3 

 

Similarly, if Craftsman 1 plays Welder (Purchases a welder), the scores for Craftsman 2 

are as in Table A.5: 

TABLE A.5 
PAY-OFFS, CRAFTSMAN 2 WITH THE PURCHASE OF A FILE BY CRAFTSMAN 1. 

 Hammer Drill 
Welder -,2 - , 1 
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 The implications for Craftsman 2 are congruent with those of Craftsman 1. If Craftsman 

1 plays File, Drill beats Hammer. But if Craftsman 1 plays Welder, Hammer beats Drill. 

So, for Craftsman 2, the pay-off of strategy depends on the strategy that Craftsman 1 

plays. Neither of the strategies dominates the other. 

  A.2.3)  Evaluation for Pure Strategy Nash Equilibrium: Evaluation for a Nash 

equilibrium will be determined by the method of bests responses. A mutual best 

response will be an NE, which will meet the condition that no player can unilaterally 

improve their condition, given what the other player is doing. For each player, the best 

response will be marked. 

   A.2.3.1  Craftsman 1:  If Craftsman 2 plays Hammer (Purchases a Hammer), the 

best response for Craftsman 1 is marked as the highest score.  See Table A.6. 

TABLE A.6 
BEST RESPONSE, CRAFTSMAN 1 WITH THE PURCHASE OF A HAMMER BY CRAFTSMAN 2 

 Hammer 
File (5),- 
Welder -2,- 

 

Likewise, if Craftsman 2 plays Drill (Purchases a drill), the best response for Craftsman 1 

are as in Table A.7. 

TABLE A.7 
BEST RESPONSE, CRAFTSMAN 1 WITH THE PURCHASE OF A DRILL BY CRAFTSMAN 2. 

 Drill 
File -3,- 
Welder (1),- 
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   A.2.3.2)  Craftsman 2: Looking for the best responses of Craftsman 2, if Craftsman 

1 plays File (Purchases a File) , the best response for Craftsman 2 is marked as in Table 

A.8. 

 

TABLE A.8 
BEST RESPONSE, CRAFTSMAN 2 WITH THE PURCHASE OF A FILE BY CRAFTSMAN 1. 

 Hammer Drill 
File -,-5 -,(3) 

 

Similarly, if Craftsman 1 plays Welder (Purchases a welder), the best response for 

Craftsman 2 is marked as well 

TABLE A.9 
BEST RESPONSE, CRAFTSMAN 2 WITH THE PURCHASE OF A FILE BY CRAFTSMAN 1 

 Hammer Drill 
Welder -,(2) - , 1 

 

   A.2.3.3)  Mutual Best Responses: Testing for mutual best responses is checked by 

combing tables: 

TABLE A.10 
BEST RESPONSES FOR BOTH PLAYERS 

 Hammer Drill 
Welder (5),-5 -3,(3) 
File -2,(2) (1),1 

 

  Neither player shares any bests responses within a strategy profile. Given what any 

given player is doing, the other player will always seek to find a different strategy. This 

lack of a pure strategy NE will be resolved through a probabilistic solution in the next 

section. 
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A.3.  Mixed Strategy Calculation 

  The concept of finding a solution to a game without a pure strategy is found from the 

reverse circumstances. If one can imagine a game where there was complete and 

mutual knowledge and in order for one player to win, the other must necessarily lose 

and equal amount (a zero-sum game), it would soon become apparent that an impasse 

would form. 

  A.3.1)  Concept of Mixed Strategy: Consider a game where players would split a deck 

of cards, each with an equal number of red cards and black cards. They will 

simultaneously place a card on the table. If the cards are both the same color, red or 

black, Player 1 will take a dollar from Player 2. If they are opposite colors, Player 2 will 

take a dollar from Player 1. The game matrix is shown below in A.11. But if both players 

were, for instance able to see a mirror that showed the opponent’s card, they each 

would want to change their strategy. 

TABLE A.11 
A ZERO-SUM GAME. A ZERO-SUM GAME PROVIDES MODEL CHARACTERISTICS TO 
DEMONSTRATE THAT A MIXED STRATEGY CAN IMPOSE CONDITIONS THAT MAKE 

OPPOSING PLAYERS INDIFFERENT TO THE UTILITY OF A GIVEN STRATEGY. 
 Black Red 
Black $1, $-1 $-1, $1 
Red $-1, $1 $1, $-1 

 
 If, instead, Player One was to shuffle his cards to the point that he was unable to make 

any determination about the card from drawing from the middle of the deck, Player 

Two would be indifferent to knowledge of Player One’s strategy. Regardless of the color 
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of the card that Player Two put down, she could not have an expected utility greater 

than found by a random selection of a black or red card. 

EU2 = $1× .5+(−$1× .5) = 0  (A.1) 

  By the same token for player one, their expected utility would be the same if player 

two underwent the same randomization. 

EU1 = $1× .5+(−$1× .5) = 0  (A.2) 

     For both players, they can expect to both receive a utility of zero. This would make 

them indifferent to the strategy which the other player was going to play, as the other 

player could not possibly know what their move would be. The antithesis of the 

dominated strategy, both would adopt the same means of measuring their expected 

utility. 

  A.3.2)  Application of the Mixed Strategy: Consider the game played between the two 

craftsmen in Fig. A.4. If Craftsman Two were to find a strategy which would make 

Craftsman One indifferent to his strategy selection, it would be picked with a probability 

which provided an equal expected utility for Craftsman One’s strategies. For the up 

strategy 

EU1up = 5× pleft +(−3× qleft) (A.3) 

For playing down: 

EU1down = (−2× pleft)+1× qleft (A.4) 

In these equations qleft is the same as pright. However: 

pleft + qleft = 1 (A.5) 

or: 
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qleft = 1− pleft (A.6) 

Establishing the condition of indifference in the EU of Craftsman 1: 

EU1up = EU1down (A.7) 

For playing down: 

5× pleft +(−3× qleft) = (−2× pleft)+1× qleft (A.8) 

Substituting equation A.6: 

5× pleft +(−3×(1− pleft)) = (−2× pleft)+1×(1− pleft) (A.9) 

Collecting terms on each side: 

−3+8× pleft = −3× pleft +1 (A.10) 

Reducing terms: 

11× pleft = 4 (A.11) 

Or: 

pleft = 4/11 (A.12) 

Also: 

pright = 7/11 (A.13) 

A similar set of calculations applies to Craftsman One: 

For playing left: 

EU2left = −5× pdown +3× qdown (A.14) 

For playing right: 

EU2right = 2× pdown +1× qdown (A.15) 

Also: 

qdown = 1− pdown (A.16) 
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Establishing the condition of indifference in the EU of Craftsman 2: 

EU2left = EU2right (A.17) 

Which leads to: 

−5× pdown +3× qdown = 2× pdown +1× qdown (A.18) 

Substituting equation A.16: 

−5× pdown +3×(1− pdown = 2× pdown)+1×(1− pdown) (A.19) 

Collecting terms on each side: 

3−8× pdown = pdown +1 (A.20) 

Reducing terms: 

9× pdown = 2 (A.21) 

Or: 

pdown = 2/9 (A.22) 

Also: 

pup = 7/9 (A.23) 

  Therefore, the Craftsman 1 would play strategies of up with probability 7/9 and down 

with probability 2/9. Craftsman 2 would play strategies of left with probability 4/11 and 

right with probability 7/11. The mixed strategy method can be applied in a variety of 

strategic situations; from pitching and hitting in a baseball game, to political 

negotiations. In this example, the industrial relationship was selected as it relates to an 

economic environment. It serves as a basis for how game theory can apply in more 

complex relationships. 
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A.4.  Sub-Game Perfect Equilibrium and Creditable Promises 

  Problematic factors arise in using game-theory in cloud computing. Each cloud user is 

incentivized to operate in their own best interest. While they may be able to increase 

their own utility by promising to providing information that helps all of the cloud user, 

they may not do so when it comes time to actually provide it. They will not have 

incentive to do if they are able to increase their own utility. 

  Consider the case where the Craftsman One wants to build benches, which require 

both metal working tools and wood working tools. The wood costs $100 and the metal 

costs $125, but Craftsman 2 only has $75. She promises to evenly split the $400 earnest 

money once the materials are purchased. The welder and file is necessary to build the 

frame of bench and seat mounts before the wood seats can be attached. Should the 

Craftsman One put forward the remaining $150? 

  Once Craftsman Two receives the earnest money, she is at a sub-game, marked by 

the dashed lines. She has a choice to either follow through with her promise to split or 

to only provide Craftsman One the $150 in return. This will result in the extended game 

in Fig. A.5. 

  The resolution of the question of a creditable promise in the subgame of Fig. A.5a is 

to represent the simultaneous game in Fig. A.5b in the normal form. Doing so 

demonstrates that Craftsman Two has no incentive to follow through on their promise. 

This is a commitment problem, and in the absence of an effective police force, 

Craftsman Two may have incentive to recompense Craftsman One even less. 
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 A similar set of circumstances exist in the cloud game-theory methods of security. A 

cloud user may promise to provide accurate information, and they may even benefit 

from doing so. But is a subgame, and the scores are indicated in the Fig. b. To represent 

this in a normal form game, the scores for both craftsmen are represented the same 

way that the paper-rock-scissors game represents a simultaneous move game. In this 

case, Craftsman Two does not know where she is at when Craftsman One is at the initial 

node. 

 



          140 

 

 

Fig. A.5. Extended game with sub-game. (a) At the initial node Craftsman One decides 
whether to enter into the business deal with Craftsman Two. If he takes the No Strategy 
(Stgy N) the game ends at 0,0. But if he goes with the Yes Strategy (Stgy Y), Craftsman 
Two will then decide whether to renege on their promise or to honor their promise. 
Thus once any other player commits to providing security information, they lose 
incentive to do so. (b) Player two is then unable to determine where they are in the 
game. The outcome is that no normal form game translation is possible. 
 
  

(  a  )  

(  b  )  

1 o,175 150,125 

1 0,175 1 1 so,12s 1 
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A.5.  Grid Uncontrolled Intersection Game 

  An idealized model of traffic flow in an uncontrolled street modeled as a agents 

acting in their own best interest seeking a resource demonstrates patterns of population 

density. Without any direct aggression, the attempt to maneuver into a more 

advantageous position tends to diminish the utility to the aggregate. This is an example 

of the ‘tragedy of the common.’ The model is an extension of the uncontrolled 

intersection in Fig. 1.1 in Fig. A.6. 

  At a given intersection each direction of traffic flow, up and to the left, are 

considered without flow in the opposite direction. Acceleration is not taken into account 

and each vehicle with an arrow is moving at a constant speed outside of the 

intersection. At the threshold and inside of the intersection, each driver is operating in 

their own best interest. 

  In the top panel a single intersection is illustrated for patterns that develop. Cars 

queue into the intersection at a constant rate. All cars in the queue to cross the 

intersection are speed regulated by maintaining an arbitrary constant distance. The 

arrows (in blue) mark the constant buffer speed all cars are operating to prevent a 

collision outside of the intersection. Preferences (utilities) are determined by 

maintaining a blue arrow (+) or a red arrow (-). Players, pay-offs, and the strategic 

elements necessary for a game environment are present. 

  Panel 1. The first car at the threshold moving upward (1) passes through the 

intersection. As this car exits the intersection, the cars following move into position at 

the threshold, and another car enters the queue. As the car moving from bottom to top 
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enters the queue, it must revert to follow the rule of maintaining constant distance. In 

that time, the car at the threshold moving from right to left (1) must clear the 

intersection. 

  Panel 2. While waiting in the queue, any driver loses their blue arrow. As they reach 

the threshold, they seek to leave the intersection within a shorter interval. Because the 

cars in queue are limited by the distance between them, and not by position they will 

shorten time at the threshold by reducing its width (2), and increase acceleration 

through the intersection. The interval between the last car in the queue and the next car 

entering increases, between 3 and 4. 

  Panel 3. At the limit of this idealized pattern of increase, the last car traveling from 

bottom to top (3) must exit the intersection prior to the next car moving from right to 

left (3) can enter the intersection, they are bound by the arrow not being able to 

intersect the car in front of them. Two consequences occur from this pattern. 

• 1. Cars bunch up at the exit of the intersection, regardless of direction   

of travel. 

• 2. The queue empties, and the pattern begins again. 

 

  Within a grid of uncontrolled intersections, the grouping of vehicles at the exit of an 

intersection establishes a phased wave pattern that is inverted from the constant traffic 

pattern. The phenomena is not limited to intersections. Most notably, a circular 

roadway with cars operating with no competitive aspect will form wave traffic patterns 
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due to driver effort to maintain distance [166]. In competitive environments, the 

phenomena is controlled by deliberate grouping [167]. 

  While several aspects of traffic management can be modeled as game theory [168] 

the consideration here is aligned to the uncontrolled transient sharing of resources. 

Game-theory predicts semi-periodic or periodic fluctuation in population density. The 

model aligns well with the biphased populations in the Lotka-Voltarra predator-prey 

model in Chapter 2. 

 

( a ) 

 

( b ) 

_J ~L_J fL_J iL 
<E--8 i ~. <E----f} ~ i ~. ➔ ~ ~ ~ •• 

I I I I 

I I I I 
I I I I 
I I I I 

7 :17;17!1 

_J •I 1.L 
~ .. ~ ~ ~ ~~ .. ~ 

7 :1 III 



          144 

 

Fig. A.6.  Uncontrolled intersection population density.  Dynamics and results from 
idealized intersection without control mechanisms for right of way. (a) Individual 
intersections resolve to increased rate of traffic resulting from drivers acting in their 
own self interests. (b) The larger grid resolves to wave patterns of traffic density. 
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APPENDIX B 
 

OWASP Top 10 2021 
 

• 1 Broken Access Control. e.g. Accessing API with missing access controls for POST, PUT 

and DELETE. 

• 2 Cryptographic Failures. e.g. This concerns protocols such as HTTP, SMTP, FTP also 

using TLS upgrades like STARTTLS. 

• 3 Injection. e.g. Hostile data is directly used or concatenated. The SQL or command 

contains the structure and malicious data in dynamic queries, commands, or stored 

procedures. 

• 4 Insecure Design. e.g. lack of business risk profiling inherent in the software or system 

being developed, and thus the failure to determine what level of security design is 

required. 

• 5 Security Misconfiguration. e.g. Missing appropriate security hardening across any part 

of the application stack or improperly configured permissions on cloud services. 

• 6 Vulnerable and Outdated Components. e.g. If the software is vulnerable, unsupported, 

or out of date. This includes the OS, web/application server, database management 

system (DBMS), applications, APIs and all components, runtime environments, and 

libraries. 

• 7 Identification and Authentication Failures. e.g. not correctly invalidate Session IDs. 

User sessions or authentication tokens (mainly single sign-on (SSO) tokens) aren’t 

properly invalidated during logout or a period of inactivity. 

• 8 Software and Data Integrity Failures. e.g. objects or data are encoded or serialized into 

a structure that an attacker can see and modify is vulnerable to insecure deserialization. 

• 9 Without logging and monitoring, breaches cannot be detected. Insufficient logging, 

detection, monitoring, and active response occurs any time: 
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– Auditable events, such as logins, failed logins, and high-value transactions, are not 

logged. 

– Warnings and errors generate no, inadequate, or unclear log messages. 

– Logs of applications and APIs are not monitored for suspicious activity. 

– Logs are only stored locally. 

– Appropriate alerting thresholds and response escalation processes are not in place 

or effective. 

– Penetration testing and scans by dynamic application security testing (DAST) tools 

(such as OWASP ZAP) do not trigger alerts. 

– The application cannot detect, escalate, or alert for active attacks in real-time or 

near real-time. 

You are vulnerable to information leakage by making logging and alerting events 

visible to a user or an attacker (see A01:2021-Broken Access Control). 

• 10 SSRF flaws occur whenever a web application is fetching a remote resource without 

validating the user-supplied URL. It allows an attacker to coerce the application to send 

a crafted request to an unexpected destination, even when protected by a firewall, VPN, 

or another type of network access control list ( ACL ).  

 

source https://owasp.org/Top10/ 
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APPENDIX C 
 

ALTERED GAME-THEORY MODELS 
 

  The extended time population distribution of altered game theory models 

demonstrated a cyclical, out of phase population of both the predator and prey species. 

These exhibited a fluctuation pattern that was less wide than the predator prey models 

without any kind of discernible intelligence on the part of the prey. They also 

demonstrated a perceivable rougher fluctuation. 

  An adaptation of the victim to the attacker in this way precedes a discussion of 

mutation in the cloud. The loss of contact with an opposing population leaves parties to 

their own characteristic integration. Reproduction, competition, and life-cycle phases 

(see Fig. 2.7.1) provides incentives to mutate in the evolutionary game-theory model 

(see Appendix F). 

C.1.  Game Theory Predation Model Metric Variation 1 

 
Fig. C.1.  Game Theory Predation Model Metric Variation 1.  Population fluctuation for 
predator and prey with reproduction probability at 0.02249. Representation in the cloud 
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resulted in 239 complete workloads, energy consumption of 1737.54 kWh, 996087 VM 
migrations, 51608 host shutdowns and 2807.02 seconds mean time before shutdown. 
 
C.2.  Game Theory Predation Model Metric Variation 2 

 
Fig. C.2.  Game Theory Predation Model Metric Variation 2.  Population fluctuation for 
predator and prey with reproduction probability at 0.022. Representation in the cloud 
resulted in 235 complete workloads, energy consumption of 1771.44 kWh, 1049386 VM 
migrations, 47228 host shutdowns and 3110.02 seconds mean time before a shutdown. 
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APPENDIX D 

CONTAINER SECURITY ARCHITECTURE 

D.1  Name-Space Descriptions 

• Mount for file system isolation; CLONE_NEWNS; isolates mount points. Mount 

namespaces provide isolation of the list of mounts seen by the processes in each name-

space instance. Thus, the processes in each of the mount name-space instances will see 

distinct single-directory hierarchies. 

• UTS for hostname and domain name isolation; CLONE_NEWUTS; isolates host name 

and NIS domain name. UTS name-spaces provide isolation of two system identifiers: the 

hostname and the NIS domain name. These identifiers are set using sethostname(2) and 

setdomainname(2), and can be retrieved using uname(2), gethostname(2), and 

getdomainname(2). Changes made to these identifiers are visible to all other processes 

in the same UTS namespace, but are not visible to processes in other UTS name-spaces. 

• IPC for IPC and message queue isolation; CLONE_NEWIPC; Each IPC name-space has 

its own set of System V IPC identifiers and its own POSIX message queue filesystem. 

Objects created in an IPC name-space are visible to all other processes that are 

members of that name-space, but are not visible to processes in other IPC name-spaces. 

• PID for process ID isolation; CLONE_NEWPID; isolates process IDs. PID name-spaces 

isolate the process ID number space, meaning that processes in different PID name-

spaces can have the same PID. PID name-spaces allow containers to provide 

functionality such as suspending/resuming the set of processes in the container and 

migrating the container to a new host while the processes inside the container maintain 

the same PIDs. PIDs in a new PID name-space start at 1, somewhat like a standalone 

system, and calls to fork(2), vfork(2), or clone(2) will produce processes with PIDs that 

are unique within the name-space. 
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Network for network resource isolation; CLONE_NEWNET; isolates Network devices, 

stacks, ports, etc. Network name-spaces provide isolation of the system resources 

associated with networking. A physical network device can live in exactly one network 

name-space. When a network name-space is freed, that is, when the last process in the 

name-space terminates, its physical network devices are moved back to the initial 

network name-space (not to the parent of the process). 

• User for UID/GID isolation; CLONE_NEWUSER, isolates user and group IDs. User 

namespaces isolate security-related identifiers and attributes, in particular, user IDs and 

group IDs (see credentials(7)), the root directory, keys (see keyrings(7)), and capabilities 

(see capabilities(7)). A process’s user and group IDs can be different inside and outside a 

user name-space. In particular, a process can have a normal unprivileged user ID outside 

a user name-space while at the same time having a user ID of 0 inside the name-space. 

• Cgroup for control group isolation; CLONE_NEWCGROUP, When a process creates a 

new cgroup name-space using clone(2) or unshare(2) with the CLONE_NEWCGROUP 

flag, its current cgroups directories become the cgroup root directories of the new 

name-space. 

• Time for clock time isolation; CLONE_NEWTIME; isolates hostname and NIS domain 

name. 

D.2  Control Groups Descriptions 

• blkio — this subsystem sets limits on input/output access to and from block devices 

such as physical drives (disk, solid state, or USB). Two policies are available. The first is a 

proportional-weight time-based division of disk implemented with CFQ. This is in effect 

for leaf nodes using CFQ. The second is a throttling policy which specifies upper I/O rate 

limits on a device. CONFIG_BLK_CGROUP 

• cpu — This subsystem uses the scheduler to provide cgroup tasks access to the CPU. 

Cgroups can be guaranteed a minimum number of "CPU shares" when a system is busy. 
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This does not limit a cgroup’s CPU usage if the CPUs are not busy. 

CONFIG_CGROUP_SCHED 

• cpuacct — This subsystem provides accounting for CPU usage by groups of processes. 

It generates automatic reports on CPU resources used by tasks in a cgroup. 

CONFIG_CGROUP_CPUACCT 

• cpuset — this subsystem assigns individual CPUs (on a multicore system) and 

memory nodes to tasks in a cgroup. This cgroup can be used to bind the processes in a 

cgroup to a specified set of CPUs and NUMA nodes. CONFIG_CPUSETS 

• device — This subsystem allows or denies access to devices by tasks in a cgroup. This 

supports controlling which processes may create (mknod) devices as well as open them 

for reading or writing. The policies may be specified as allow-lists and deny-lists. 

Hierarchy is enforced, so new rules must not violate existing rules for the target or 

ancestor cgroups. CONFIG_CGROUP_DEVICE 

• freezer — this subsystem suspends or resumes tasks in a cgroup. The freezer cgroup 

can suspend and restore (resume) all processes in a cgroup. Freezing a cgroup /A also 

causes its children, for example, processes in /A/B, to be frozen. 

CONFIG_CGROUP_FREEZER 

• hugetlb — This supports limiting the use of huge pages by cgroups. 

CONFIG_CGROUP_HUGETLB 

• memory — This subsystem sets limits on memory use by tasks in a cgroup and 

generates automatic reports on memory resources used by those tasks. The memory 

controller supports reporting and limiting of process memory, kernel memory, and swap 

used by cgroups. 

CONFIG_MEMCG 

• net_cls — this subsystem tags network packets with a class identifier (classid) that 

allows the Linux traffic controller (tc) to identify packets originating from a particular 
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cgroup task. This places a classid, specified for the cgroup, on network packets created 

by a cgroup. These classids can then be used in firewall rules, as well as used to shape 

traffic using tc(8). 

This applies only to packets leaving the cgroup, not to traffic arriving at the cgroup. 

CON-FIG_CGROUP_NET_CLASSID 

net_prio — this subsystem provides a way to dynamically set the priority of network 

traffic per network interface. This allows priorities to be specified, per network 

interface, for cgroups. CONFIG_CGROUP_NET_PRIO 

• ns — the namespace subsystem. As described above. 

• perf_event — this subsystem identifies cgroup membership of tasks and can be used 

for performance analysis. This controller allows perf monitoring of the set of processes 

grouped in a cgroup. CONFIG_CGROUP_PERF 

• pid This controller permits limiting the number of process that may be created in a 

cgroup 

(and its descendants). CONFIG_CGROUP_PIDS 

• rdma The RDMA controller permits limiting the use of RDMA/IB-specific resources 

per cgroup. CONFIG_CGROUP_RDMA 
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APPENDIX E 
Top Tens 

 

E.1  THE OWASP Serverless TOP 10, 2017 

• 1 Injection. If a function is triggered via email or a database, there is nowhere to put a 

Firewall or any other control that will validate the event. 

• 2 Broken Authentication. Attackers will try to look for a forgotten resource, like a 

public cloud storage, or open APIs. 

• 3 Sensitive Data Exposure Most of the methods used in traditional architectures, such 

as stealing keys, performing man-in-the-middle (MitM) attacks and stealing readable 

data at rest or in transit, still apply to serverless applications. However, the data sources 

might be different. 

• 4 XML External Entities (XXE) In serverless, executing remote requests (OOB) might 

not be possible if the function is running inside the internal virtual private network 

(VPC). Scanning will be less likely to take effect in the few seconds the function has and 

DoS attacks are less of a concern, because the function is running in a designated 

container which will affect only the current execution. 

• 5 Broken Access Control Attackers will target over-privileged functions in order to 

gain unauthorized access to resources in the account rather than having control over 

the environment. 

• 6 Security Misconfiguration Unused pages are replaced with unlinked triggers, 

unprotected files and directories are changed to public resources, like public buckets. 

Attackers will try to identify misconfigured functions with long timeout or low 

concurrency limit in order to cause a Denial of Service (DoS). 

7 Cross-Site Scripting (XSS) The source of traditional XSS attacks are usually databases or 

reflective inputs. While in serverless they could also originate from different sources like 

emails, cloud storage, logs, IoT and others. 
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• 8 Insecure Deserialization Dynamic languages like Python and NodeJS, together with 

the common use of JSON, a serialized data type, could make deserialization attacks a 

little more common in the serverless world. 

• 9 Using Components with Known Vulnerabilities To be able to execute the desired 

tasks, functions make use of many dependencies and 3rd-party libraries. Vulnerability 

introduced by the supply chain is one of most common risks these days and attackers 

will target code that makes use of vulnerable libraries as an entry point to the 

application. 

• 10 Insufficient Logging and Monitoring. The fact that serverless auditing is now even 

more difficult than in traditional applications, where we use our own logging system, 

and not the one provided by the infrastructure, just makes it easier for the attackers. 

E.2  The Serverless Architectures Security Top 

  It is clear that there are trade-offs to developing security in the serverless structure. A 

shortlived execution cycle limits the ability to launch persistent attacks. But at the same 

time, the fine granularity and inter-connectivity tends to expand the attack surface. [1]. 

Several problem areas have been identified for examination at a technical level E.1. On 

the other hand other studies suggest a change in the culture surrounding serverless 

computing [143]. 
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TABLE E.1 

THE SERVERLESS ARCHITECTURES SECURITY TOP 10[1], [2] 
Number Threat  
SAS-1 Function Event Data Injection 
SAS-2 Broken Authentication 
SAS-3 Insecure Serverless Deployment 

Configuration 
SAS-4 Over-Privileged Function Permissions 

& Roles 
SAS-5 Inadequate Function Monitoring and 

Logging 
SAS-6 Insecure 3rd Party Dependencies 
SAS-7 Insecure Application Secrets Storage 
SAS-8 Denial of Service & Financial 

Resource Exhaustion  
SAS-9 Serverless Function Execution Flow 

Manipulation 
SAS-10 Improper Exception Handling and 

Verbose Error Messages 
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APPENDIX F 
 

FUNCTIONS-as-a-SERVICE EVOLUTION 
 

F.1.  Evolution of the Serverless and Parallel Threats 

  The establishment of the cloud was a progressive development. Grid and point-to-

point (P2P) networks existed prior and remote servicing was a common business model 

[169]. Virtualization has existed since mainframe computing as an economic measure 

[170]. Virtualization in the cloud developed in an evolutionary manner [171] and the 

security considerations right along with it [118]. 

  The innovation of serverless computing is also an evolutionary change [133]. It’s 

economic development [90] emerged from a unique virtualization environment [113]. 

Serverless computing altered the stable landscape, introducing a new equilibrium. 

F.2.  The Evolution Game Theory Model of FaaS 

Game Theory has been applied to almost every aspect of cloud computing. Networking, 

power, memory, cyber-security [63], resource allocation [172], and co-resident threats 

[62]. Many, if not all models of game theory have also been applied: signaling games 

[64], cooperative games: [173] , zero-sum [174], and Stackleberg [175]. 

  The implementation of these methods has been shown to face the challenge of 

inadequate scoring [172]. The stochastic simulation in the first part of this study is one 

method of addressing this matter (see 2). Game-theory is plainly not limited to the case 

of security. But again, the utility of any given agent is not easily obtained, their 
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rationality is subject to question, and a precise description of their available strategies is 

evasive. 

  F.2.1)  Evolutionary Game Theory: An adaption of game theory can operate 

unconstrained by rationality and expands the applicability of utility to abstract 

quantities. This method considers repeated iterations of game play, but not in terms of 

turns, such as extended forms. Strategies are adaptive and, rather than holding fixed 

positions, the games are played as encounters. 

  Evolutionary game theory is applicable in biological, economic, and social sciences, as 

well as technical studies.  It defers the common knowledge requirement assumed by 

traditional game theory and contemplates an alternative set of assumptions.  The 

rational player evaluation of a pay-off matrix is replaced by mutations occurring as 

environmental adaptations. 

  Evolutionary game theory promotes a different notion of evolution than survival of 

the fittest.  It instead considers the ability to pass on characteristics to following 

generations and rewards proliferation.  Such a mechanism provides for the more 

optimal usage of resources, redefines the relationship between players, and trends to 

elimination of the zero-sum game. 

  F.2.2)  Example One: The Iterated Prisoner’s Dilemma: The prisoner’s dilemma is one 

of the most common and well studied games in game theory.  It exemplifies the 

significance and structure of the Nash Equilibrium in the same form as the uncontrolled 

intersection and stag hunt games.  In its iterated from, it demonstrates one of the 

evolutionary game theory principles that supports the serverless FaaS environment. 
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  The components of the game consider two criminals that the police catch in the act 

of minor offense.  The police suspect them of being in the act of a more serious charge, 

but are unable to prove it without the confession and implication of one or both.  The 

prisoners are separated and each informed that they will receive a reduced sentence for 

defecting on their accomplice.  But, if the other confesses and defects, they will receive 

the maximum punishment.  Both can confess/defect, but the value of the confession will 

reduce the benefit of their own confession.  The pay-off matrix is in Fig. F.1. 

  The prisoner’s dilemma solution is for each of them to play defect, or defect/defect, 

which is a Nash Equilibrium.  Neither player is able to unilaterally improve their position 

by changing their strategy.  Had both chosen, and more significantly adhered to, 

cooperate/cooperate, a more efficient outcome would result.  However, either party 

could then change their strategy to defect.  Altering the game to repeated interactions 

presents the opportunity to incorporate mutable strategies. 
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Fig. F.1.  The payoff matrix for the prisoner’s dilemma.  Two would-be thieves are 
apprehended by law enforcement and held in separate interrogation rooms. 
Prosecutors believe that they were in the process of committing a greater crime, but are 
not able to prove it.  The police make an offer to each of the prisoners: confess to the 
greater crime for a more lenient sentence which will implicate the prisoner’s partner for 
the maximum sentence.  If both prisoners confess, the value of the confession is less, 
and they both receive medial punishment.  The scores in the payoff matrix are arranged 
into boxes which correspond to the strategies indexed by row and column. Within the 
box, the left digit applies to the vertical strategies. Separated by a comma, the right digit 
applies to the horizontal player’s strategies. 
 
  Rather than conducting the prisoner’s dilemma a single round of play, the game can 

be conducted multiple times, starting with each player similarly situated.  For a single 

instance, the strategies of defect/defect do achieve the only Nash equilibrium in the 

normal form.  This is not, however, the most efficient outcome. 

  This game was analyzed by pitting different algorithms against each other [176]. 

Going through several hundred iterations, a set of scores developed for entrants.  This 
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revealed a very different result than the pure strategy result of defect.  By starting off in 

a cooperative strategy and playing that strategy until the other player defected, a kind 

of reprisal system was found to be most efficient of the contest.  If, on some subsequent 

move, a the opposing player cooperated, the strategy was to revert to cooperation. 

  F.2.3)  Example Two: Hawk and Dove: An alternative model in evolutionary game 

theory two agents assuming the roles of hawk and dove. In this game a contested 

resource can be obtained based on the aggressive or passive profiles chosen by agents.  

A hawk profile may encounter another hawk and fight for the resource until one is 

injured, from which the winner will take the resource.  Each is equally likely to win in 

any given encounter, however, they both assume the cost of injury.  Two doves will 

encounter each other and posture until both split the value of the resource.  Finally, 

when the hawk meets the dove, it simply takes all of the resource while the dove gets 

nothing. A pay-off matrix for this game is in Fig. F.2. 
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Fig. F.2.  The payoff matrix for the hawk and dove game 

 
  Characteristic of the hawk and dove game is that rather than numeric values, V for 

’value’ and C for ’cost’ are in the pay-off matrix.  The solution to the hawk and dove 

game is dependent, not on the actual values of the V and C, but rather the events of 

players meeting.  Although a hawk meeting a dove will result in zero pay-off for the 

dove, relationship where V/2-C is less than zero will still be less than that of zero when a 

hawk meets a dove.  Additionally, the V/2 pay-offs from when a dove meets a dove does 

not include any cost, C, due to damage.  In the environment that is largely populated by 

hawks, a local region of higher scoring can exist only for doves. 

  Once again, cyclic changes emerge in this uncontrolled environment, unless there is a 

definitive means of ensuring the value of V/2 is greater than C.  Even though the hawks 

are stronger, two doves are able to build stable cooperation due to losing nothing in 
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cooperation.  Such an environment is only stable as the collective score is able to 

maintain a balance with the cost at the collective boundaries.  A single instance of a 

mutation to hawk within the boundary also risks loss of the benefit.  These conditions 

are called an evolutionary stable strategy, which are covered in more detail in Appendix 

F.2.5. 

  F.2.4)  Games Promoting Serverless Models: Certain aspects of the iterated prisoner’s 

dilemma can be aligned with the serverless models. The specter of vendor lock-in 

creates a strategically binding scenario between the provider and the user. However, 

the applicability of the extended game maybe diminished in scope due to the Nash 

equilibrium’s alternative definition. An NE is also described as a rule that all agents in a 

game would follow in the absence of an effective police force. This would contradict the 

ability of the police to hold any suspect at all. Also this strategy mutates into its 

descendant, altruistic tit-for-tat, which forgives some instances of defect. Upon analysis, 

this strategy mutated to unconditional cooperation across a wider range of 

environments. Again, a cyclic rise and fall of populations would occur as incentive to 

defect began to form. 

  The serverless evolution can also be modeled in the hawk and dove game. It is not 

necessary that the serverless cloud require complete homogeneity e.g. all hawks and 

doves. Rather, it is sufficient that an even dispersion of agents is present and the 

population can include both hawks and doves. The fine grained, ability to scale to 

infinity in the serverless cloud provides the effect of a homogeneous environment 

necessary for the application of this model of evolutionary game theory. Therefore, two 
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or more cooperating players are able to build a locally stable region of higher scoring 

than an environment largely populated by hawks. 

  The applicability of this model is also limited, though for a different reason than the 

prisoner’s dilemma. First, a local region of stability is accelerated by the ratio of internal 

area to external circumference. So, the internal region will generate higher pay-offs 

faster than the ability to control those pay-offs by the hawks. Although this may appear 

to be a good thing, the single instance of a mutation to hawk within the region of doves 

will result in elimination of doves due to hawks. Once again, a cyclic pattern emerges. 

  F.2.5)  Alternative Game Theory in the Cloud: Evolutionary Stability in FaaS: A lack of 

common knowledge, disjoint scoring and utility, and absence of rationality is not 

entirely prohibitive of the adoption of game theory in the cloud. From both an 

ecological perspective and from a security perspective, cloud computing development 

can be modeled without the alignment of payoffs on a normal form game. Players need 

not be rational in the sense that their utility maximization is the only objective. 

  F.2.5.1)  Players: While evolutionary game theory allows for the designation of 

predator and prey, it adopts a different means of describing the interaction that goes 

beyond conflict. In the game theory model, a set of players is considered to be identical 

within an environment, but are subject to mutation. That mutation is then capable of a 

different strategy in its interactions and use of resources. A successful mutation will 

have the ability to carry on to future generations. 

   F.2.5.2)  Strategies: In the evolutionary game theory, the development of 

characteristics is expanded to community members. This aspect permits the growth of 
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altruistic characteristics transferring to the proliferation of the species. The traditional 

competition gives way to the interactions that occur when agents meet each other. 

   F.2.5.3)  Pay Offs: The ability to measure a score as a reward for the behavior of a 

player is subservient in the evolutionary game-theory model to the proliferation of the 

species. A functional relationship is further probabilistic as moves of nature are 

considered due to the extended form characteristic of the game. Additionally, the 

division of benefits and cost is more fungible to the collective. 

  F.2.6)  Example: An altered model of the predator-prey game need not only adjust 

the parameters that characterize the individual and have implications for the collective. 

A victim may have the ability to issue an alert upon encountering an attacker. While the 

tendency may be to hide and avoid detection, instead a victim then announces their 

presence to the attacker. The alert places the victim at greater danger. 

  Such an altruistic behavior sets the conditions for the proliferation of the species. The 

benefit to the group is that the prey is able to evaluate the danger to the group upon 

the meeting of a single individual. This may not require an eminent sacrifice on the part 

of that individual, but it places them in greater contrast to the surroundings observed by 

the attacker. The prey group is then able to adapt to additional mutations, such as 

specialization of look-outs, evasions connected with alerting mechanisms, and signal 

passing which attenuates the vulnerability of the original alert givers risk. 

  Of course, the attacker develops their own mutations. These may be related to the 

ability of the prey to issue an alert directly or indirectly. An alert may be intercepted by 



          165 
 

 

more than the original attacker. Alerts may imply that the volume of target victims is 

enough to amass attackers. Alerts are subject to falsification. 

  These are all factors that become organic to each of the component agents in an 

environment. Rather than becoming a rational choice, the behavior becomes 

characteristic and instinctive in a complex system. The cloud is capable of that degree of 

complexity. This will appear in the adaption of more intricate service models. 

F.3  Evolutionary Game Theory and the Emergence of FaaS 

  In the evolutionary model, the ability to pass on genes and thrive is tested by the 

mutation of a player appearing on the game-space and meeting another player. A single 

mutation is likely to meet one of the players without a mutation. From this encounter, 

with a hawk or defector, meeting a dove or cooperator respectively, it is likely they will 

not thrive enough to reproduce. But when two cooperative parties meet, their payoffs 

are high enough that they are able to reproduce. By this means, an enclave of 

cooperation can form, even in a field of defectors. This system works even though it 

may result in greater harm to any one player. For instance, a call out in alarm may cause 

a greater risk to a prey. But it ensures the survival of its offspring. This is the same result 

from the altered predation model, which informed them to flee. 

  A different ecology has emerged in cloud computing through the dynamics in game 

theory. This is a mutation of the programmatic environment that has established itself 

in several forms in both commercial and open-source venues. Its economic factors 

include the same economies of scale that compose the cloud in this game theory model. 

Yet, the variation in programmatic behavior has allowed for an evolutionary stable set 
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of specialized behaviors. It reflects a series of mutations to the various -as-a-Service 

models and an altered strategy on the parts of the players of cloud security games. 
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APPENDIX G 

DATA DEVELOPMENT 

G.1  Kubernetes Configuration 

 
Fig. G.1.  Minikube startup and configuration 
 

  

sudo userftlod -aG docker $USER && newgrp docker 
[sudo] password for research4: 

@) c\ntkube vi. 32 .0 on Ubuntu 22 .04 
ftllnlkube start - -drlver=docker - -cpus=4 - -r,eriory=4096 - -extra-conflg=scheduler .v=6 

♦-t Usi.ng the docker dri.ver based on user confi.gurati.on 
Uslng Docker drlver wlth r oot pr lvi.leges 

.. Starti.ng control plane node fTllni.kube i.n cluster ftli.ni.kube 
.''! Pull i.ng base i.JT1age ... 
'1 Creatlng docker contai.ner (CPUs =4, MeJT1ory=4096MB) 
., Prepari.ng Kubernetes vl.28.3 on Docker 24.0. 7 .. . 

■ scheduler. v=6 
■ Generati.ng certlfi.cates and keys ... 
■ Booti.ng up control plane . .. 
■ Confi.gur i.ng RBAC r ules 

6' Conf\gur\ng bridge CNI (Container Networking Interface) 
■ Uslng lr,age gcr.lo/k8s-rilni.kube/stor age-pr ovi.sloner :vs 

t.. Veri. fyi.ng Kubernetes coJT1ponents . .. * Enabled addons: storage-provi.si.oner, default-storageclass 
f kubectl not found. If you need \t, try: ' c\n\kube kubectl get pods ·A ' 
~ Done! kubectl ls now confi.gu r ed to use "Mi.ni.kube" cluster and "default" nar,espace by default 

$ eval $(JT1i.ni.kube docker -env) 
$ alias kubectl =" c\n\kube kubectl 
$ rii.ni.kube i.r,age ls - - forMat table 

lJT1age Tag lJT1age ID Si.ze 

gc r . i.o / kSs - JT1i. ni. kube /stor age -pr ovi. s i.one r vs 6e3Sf40d62Sdb 31. SMS 
regi. st ry. kSs. i.o/kube • api. server vl.2S.3 5374347291230 126MS 
reg ls try . kSs. lo/kube -contra ller -Manager vl.2S . 3 10baalca1706S 122MS 
regi. st ry. kSs. i.o/kube - scheduler vl.2S.3 6dlb4fdlb1S2d 60 . IMS 
reg\ st ry. kSs. \o/kube • proxy vl.2S.3 bfcS96cfS0fba 73. IMS 
registry. kSs. \o/etcd 3. 5. 9 • 0 73deb9a3f7025 294MS 
regi.stry. kSs. i.o/coredns/coredns vi. 10 . 1 ead0a4a53df89 53. 6MS 
regi. st ry. kSs. i.o/pause 3. 9 e6 f lSl6SS3972 744kS 

: $ kubectl get events 
LAST SEEN TYPE REASON OBJECT MESSAGE 
21'1495 NorJT1al Starti.ng node/JT1i.ni.kube Starti.ng kubelet. 
21'1485 Nor rial NodeHa s Su ff lei.en tMeMor y node/rilni.kube Node rilnlkube status \ s now: Node Has Su ff lei.en tMerior y 
2M48s NorJT1al NodeHa sNoDi. skP res sure node/JT1lni.kube Node JT1i.nlkube status \s now: NodeHa sNoDi. skP res sur e 
2M48S NorJT1al NodeHa s Su f fi. c i. ent PT D node/JT1lni.kube Node JT1i.nlkube status \s now: NodeHa s Su f fi. c i.ent PT D 
2M49S Nor rial NodeA \ \oca tab le Enforced node/rii.ni.kube Updated Node Allocatable l\c\t across pods 
2M26s NorJT1al Startlng node/JT1lni.kube St artlng kube let. 
2c26s NorJT1al NodeAl locatableEnf orced node/JT1lni.kube Updated Node Allocatable l i.Mi. t across pods 
2M26S Nor rial NodeHa s Su ff i.c i.en tMerior y node/c\n\kube Node rii.nlkube status \ s now: Node Has Su ff i.c i.en tMerior y 
2M26s NorJT1al NodeHa sNoDi. skP res sure node/JT1lni.kube Node JT1i.nlkube status \s now: Node Ha sNoDi. skP res sure 
2M26s NorJT1al NodeHa s Suf f i. c i. ent PT D node/JT1i.ni.kube Node JT1i.ni.kube stat us \s now: NodeHa s Su f f i. c i.ent PI D 
2Ml Ss NorJT1al ReglsteredNode node/c\n\kube Node rii.ni.kube event: Registered Node JT1lni.kube i.n Controller 
2M3S Nor Mal Starti.ng node/JT1i.ni.kube 

: $ 
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G.2  Docker Builds 

 
Fig. G.2.  Docker container image build process.  The container image serves as the 
template to execute function code in the Kubernetes cluster. The images will be present 
in the local registry. See Fig. G.1. 
  

$ docker bulld - t buffon -test -lMage -f ./DockerflleBuffonTest 
DEPRECATED: The legacy builder ls deprecat ed and wlll be reMoved ln a f ut ure release. 

Inst all the bulldx coMponent t o bulld t Mages wlt h BulldKlt : 
https://docs.docker.coM/go/bulldx/ 

Sending bulld context to Docker daeMon 995.3kB 
St ep 1/11 : FROM pyt hon:3.10 -sltM 

· · ·> 152de85cbe2a 
Step 2/11 : ENV PYTHONDONTWR ITEBYTECODE=l 
··· > Uslng cache 
•·· > bb42c5a98c6b 

Step 3/11 : ENV PYTHONUNBU FFERED=l 
··· > Uslng cache 
•··> e8792a773fac 

St ep 4/11 : COPY requlreMent s. t xt 
···> Uslng cache 
-- - > a393025b5f 05 

Step 5/11 : RUN python · M plp install - r requlreMents.txt 
--· > Uslng cache 
· · ·> f 397b48e66d3 

Step 6/11 : RUN plp lnstall nuMpy 
-- - > Uslng cache 
•·· > 90e4e036d236 

St ep 7/11 : WORKDIR /app 
· · · > Uslng cache 
•··> 4cc7501d06ea 

St ep 8/11 : COPY . /app 
··· > d905b8e8477f 

St ep 9/11 : RUN adduser -u 5678 -- disabled -password -- gecos "" appuser && chown -R appuser /app 
· · · > Running ln be8a6bce7931 

Addlng user ·appuser' .. . 
Addlng new group ·appuser' (5678) 
Addlng new user ·appuser ' (5678) wlth group ·appuser (5678) ' ... 
c reat ing hoMe di rect ory "/hoMe/appuser ' ... 
Copying flles froM "/etc/skel' ... 
Addlng new user ·appuser ' to suppleMental / extra groups ·user s ' ... 
Addlng user ·appuser' to group ·users ' ... 
ReMovlng lnterMedlate container be8a6bce7931 

- - - > 10c5aecc4e68 
Step 10/11 : USER appuser 
--- > Running ln eofaab6fc058 

ReMovlng lnterMedlate container e0faab6f c058 
···> 95204b219c98 

St ep 11/11 : ENTRYPOI NT [ "pyt hon3", "buffon -test .py", "paraMl" ] 
··· > Runnlng ln bbbf9cf7bllb 

ReMovlng lnt e rMedlat e cont ainer bbbf9c f7bllb 
---> a47a5143470d 

Successfully bullt a47a5143470d 
Successfully tagged buffon -test -l Mage:latest 

$ 
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G.3.  Event and Inspection Data 

  Two process’ of data extraction were obtained from the Kubernetes cluster. The 

event data for pods and inspection commands provided container start and stop time. 

  G.3.1)  Event Data: Pod events where logged in the scheduler of the Kubernetes 

cluster. The default setting was inadequate to provide information at the necessary 

granularity. This was remedied by setting verbosity levels to a higher setting permitting 

readings to the micro-second. 

 
Fig. G.3.  Pod scheduling events at the default setting.  At the default setting for the 
Kubernetes cluster, pod events are logged. However, each data point is absent numeric 
timing data. This the case for scheduling, image pulling from the registry, for the 

: $ cd Max4NS_240203 
S kubectl apply - f python - job.yaMl 

job.batch/naMespace -1- job created 
S kubectl get events -- naMespace=naMespace -1 -o json 

.tteMs[ ] I select(.reason I test( "Scheduled")) I " \(.Metadata.naMe)\t\(.eventT\Me) " ' 
naMespace -1- job -48dsS.17b0b373flba93f3 null 
naMespace -1- job -6lxMs.17b0b373f 2876ad2 null 
naMespace -1- job -dlqw2.17b0b373f28533ab null 
naMespace -1- job - ksv8M.17b0b373flcedcfa null 
naMespace -1-job-qcqbq.17b0b373f 1057acc null 
naMespace -1- job - s8M6r.17b0b373f19e5655 null 
naMespace -1- job -v8cps.17b0b373fld18b46 null 
naMespace -1- job -x76Sv.17b0b373f 4499da8 null 

S kubectl get events -- naMespace=naMespace -1 -o json 
.tteMs[ ] I select(.reason I tes t ( "Created " )) I "\(. Metadata.naMe)\t\(.eventT\Me)" ' 
naMespace -1-job-48dsS.17b0b374906b0571 null 
naMespace -1- job -6lxMs.17b0b374890585d2 null 
naMespace -1- job -dlqw2.17b0b37489007aa2 null 
naMespace -1-job- ksv8M.17b0b374882dfb26 null 
naMespace -1- job -qcqbq.17b0b37489370ble null 
naMespace -1- job - s8M6r .17b0b3748daff466 null 
naMespace -1-job-v8cps.17b0b3748a328688 null 
naMespace -1- job -x765v.17b0b374907259eb null 

S kubect l get events -- naMespace=naMespace -1 -o json 
.tteMs[ ] I select(.reason I tes t ( "Started")) I "\( . Metadata.naMe)\t\(.eventT\Me) " ' 
naMespace -1- job -48ds5.17b0b374b347b007 null 
naMespace -1- job -6lxMs.17b0b374ad33ee96 null 
naMespace-1-job-dlqw2.17b0b374a9S73442 null 
naMespace -1- job - ksv8M.17b0b374ad365872 null 
naMespace -1- job -qcqbq.17b0b374a937dbf3 null 
naMespace-1-job-s8M6r.17b0b374a93514a2 null 
naMespace -1- job -v8cps.17b0b374aa8d1147 null 
naMespace -1- job -x76Sv.17b0b374b0bdd801 null 

S kubectl get event s --naMespace=naMespace -1 -o json 
.tteMs[ ] I select(.reason I test( "Pulled " )) I "\(.Metadata.naMe)\t\(.eventT\Me) " ' 
naMespace -1- job -48dsS.17b0b374868af9ee null 
naMespace-1-job-6lxMs.17b0b3747d758a11 null 
naMespace -1- job -dlqw2.17b0b3748016ebdd null 
naMespace -1- job - ksv8M.17b0b3747d9S01cd null 
naMespace-1-job-qcqbq.17b0b3748096e2f8 null 
naMespace -1- job - s8M6r.17b0b374844dfa94 null 
naMespace -1- job -v8cps.17b0b374834cd177 null 
naMespace-1-job-x76Sv.17b0b3748839f610 null 

jq - r • I 

jq - r ' 

jq - r ' 

jq - r ' 
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creation, and starting of the pod. Under normal circumstances, the record will hold this 
data for an hour. 

 
Fig. G.4.  Pod scheduling events at the augmented verbosity setting. By entering the 
extra configuration scheduler verbosity level, it is possible to extract more precise 
information about the behavior of the cluster. This applicable to micro-second 
information about the pod scheduling. However, other metrics (Creation in this case) in 
the pod creation time remained invisible to the user. 
  

$ kubectl get events --na~espace=na ~espace-1 -o json 
.tte~s [ ] I select(.reason I test( "Scheduled")) I " \(. ~etadata . na ~e)\t\(.eventTt ~e) " ' 
na ~espace-1-job-25fs9.17b0b3c053f46df2 2024-02-04T15:51 : 37.397032Z 
na ~espace-1-job-48ds5.17b0b373flba93f3 null 
na ~espace-1-job-6fsk5.17b0b3c04ff57035 2024-02-04T15:51 : 37.329975Z 
na ~espace-1-job-6lx~s.17b0b373f2876ad2 null 
na ~espace-1-job-bqzlh.17b0b3c04dd4ae8f 2024-02-04T15:51 : 37.294280Z 
na ~espace-1-job-dlqw2.17b0b373f28533ab null 
na ~espace-1-job-h6brf.17b0b3c053edf5b6 2024-02-04T15:51 : 37.396608Z 
na ~espace-1-job-ksvs~.17b0b373flcedcfa null 
na ~espace-1-job-l5jkd.17b0b3c0587f4a67 2024-02-04T15:51:37.472833Z 
na ~espace-1-job-qcqbq.17b0b373f1057acc null 
na ~espace-1-job-s8~6r.17b0b373f19e5655 null 
na ~espace-1-job-v282l.17b0b3c0550ebd76 2024-02-04T15:51 : 37.415529Z 
na ~espace-1-job- v8cps.17b0b373fld18b46 null 
na ~espace-1-job-x24v6.17b0b3c04c4900b6 2024-02-04T15:51 : 37.268312Z 
na ~espace-1-job-x765v.17b0b373f4499da8 null 
na ~espace-1-job-zc9df.17b0b3c056999f05 2024-02-04T15:51 : 37.441409Z 

$ kubectl get events --na~espace=na ~espace-1 -o json 
.tte~s [ ] I select(.reason I test( "Created " )) I " \( . ~etadata.na~e)\t\(.eventTt ~e) " ' 
na ~espace-1-job-25fs9.17b0b3c11150410b null 
na ~espace-1-job-48ds5.17b0b374906b0571 null 
na ~espace-1-job-6fsk5.17b0b3c0fa9288c7 null 
na ~espace-1-job-6lx~s.17b0b374890585d2 null 
na ~espace-1-job-bqzlh.17b0b3c104bc6292 null 
na ~espace-1-job-dlqw2.17b0b37489007aa2 null 
na ~espace-1-job-h6brf.17b0b3c10959cb3c null 
na ~espace-1-job-ksv8~.17b0b374882dfb26 null 
na ~espace-1-job-l5jkd.17b0b3c0de8b2e2b null 
na ~espace-1-job-qcqbq.17b0b37489370ble null 
na ~espace-1-job-s8~6r.17b0b3748daff466 null 
na ~espace-1-job-v282l.17b0b3cllc87bc54 null 
na ~espace-1-job-v8cps.17b0b3748a328688 null 
na ~espace-1-job-x24v6.17b0b3c0ec7bfc91 null 
na ~espace-1-job-x765v.17b0b374907259eb null 
na ~espace-1-job-zc9df.17b0b3c0dc2d4842 null 

jq -r ' 

jq -r ' 
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  G.3.2  Container Inspection 

 
Fig. G.5.  Container data inspection.  Container data is extracted using the «inspect» 
command with the container ID. This is obtained through alignment with pod IDs and 
resident containers.  Under normal circumstances, the record will hold this data for an 
hour. 
 

  

S kubectl get pods - - nafTlespace=nafTlespace - 1 - o custofTl - colu 
r1ns=Nar1e: fTletadata. narie, Docker I D: . status. contai..ners tat uses [ * ] . contai..ner ID 
Nar1e Docker ID 
nacespace - 1 - job - 8cb6f docker:// f b 1ad80901c 7 dz 3a 26 7f 619bbac 7 f 06c Se 22 5b6ad 722832cb6 f c04d 2 97 52083 7 
na~espace - 1 - job - 9sp l6 docker:/ /0a1 f 8c71 f 11bdf 4cdbdc 11ea49249a6 7fedlb5930c286fd666641244670b540c 
nacespace - 1 - job -cl l2v docker:// 4e5be!b7!al 127845836488c2ff071c2a2 5 lal f35c 1580f 4 77 a6a2896eae0508 
nacespace - 1 - job - s jZcx docker :// a6f c72c8bd8e8f 19c062d7!b05ab44a398d89d0e13657067f a00cab4a9f d2596 

S docker i..nspect contai..ner _ i..d/contai..ner _narie 
[ ] 
Er ror : No such object: contai..ner _ i..d/contai..ner _narie 

S docker i.nspect contai.ner _ i.d/fb!ad80901c7d23a267f6!9bbac7 
f 06c sezz 5b6ad72 28 3 Zcb6f c04d2 97 52083 7 
[ ] 
Error: No such object: contai.ner _ i.d/fblad80901c7d23a267f619bbac7f06c5e225b6ad722832cb6fc04d297520837 

722832cb6f c04d29752083 7 
[ 

S docker i.nspect fb!ad8090!c7d23a267f6!9bbac7f06c5e225b6ad 

" I d " : " fb!ad8090!c 7d23a26 7f 6! 9bbac 7f 06c 5e225b6ad722832cb6f c04d297520837" , 
" created" : " 2024 - 02 - 06T0!: I 5: 38. 809023 I 172" 
" Path " : " python3" 
" Ar gs " : [ 

]. 

" buffon - test . py", 
" parafTll" 
" 6470" 

" State" : { 
" St atus "exi.. t ed", 
'' Runni..ng" : false, 
" Paused " : f alse, 
"Restarti..ng " : f alse, 
" OOMKi.lled" : false, 
"Dead" : false, 
" Pi.d" : 0, 
" Exi.. t Code" : 0, 
" Er ror " : "" , 
" St artedAt" : "2024 02 - 06T0!:!S:38.9507!0753Z" , 
" Fi.ni.shedAt" : " 2024 - 02 - 06T0!: !5:44.0393282942" 
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  G.4  Python Codes 

 
Fig. G.6.  Buffon’s needle test using Numpy module. 

1 ; buffon-test _nucpy . PY 
; Buffon• s needle t est using t he nurnpy library for rand0111ization 

3 # and for calculation of sine and cos ine 
4 
S in:,ort time 
6 in:,ort s ys 
7 import !1~£X as np 
8 
9 beginni ngTime = ( time. t ime() ) 

10 np . randoc. seed (4 ) 

11 
12 san:ple = int(sys. a r gv[2]) 

13 
14 widt h = 1.0 ; floor slat width 
15 needle = 0. 5 ;: needle length 
16 num_hits = 0 
17 num_misses = 0 
18 
19 x_l o = 0.0; x_hi = 3.0 # 1st end point 
20 y_ l o = 0.0; y_hi = 4.0 

21 
22 -for i i n range ( sample) : 
23 x = ( x_hi x_lo) ~ np.random.random() + x_l o 
24 y = ( y_ hi - y_ lo) • op . r a ndom.random() + y_l o 

25 
26 angl e = np .radians (360.0 • op . r andom.random() ) # 0 to 2pi 
27 
28 xx x + needle * np .cos(ang.le) 
29 yy y + needle * np . sin(angle) 
30 
31 if xx < x: 
32 (x, xx) = ( xx, x ) 
33 (y, yy) = ( yy, y ) 
34 ;: (x,y) now to l eft of (xx, yy) 

35 
36 
37 
38 
39 
40 
41 
42 
43 

i f ( x < 0.0 a nd xx > 0.0) \ 
or ( x < 1.0 a nd xx > 1.0) \ 
or ( x < 2.0 a nd xx > 2.0) \ 
or ( x < 3.0 a nd xx> 3.0) : 
num_hi ts + = 1 

else : 
num_m:.sses 

~ 2nd end point 

44 pr = ( num_hits • 1.0 ) / ( num_hits + nu.:a_misses) -:t frequenqr 
45 p i _est = ( 2.0 • needle) / (pr • width) 
46 
47 ;Pri nt the beginning epoch time in seconds 
48 pri nt ( beginn i ngTime ) 
49 
50 e ndingT ime = time. t i me () 
51 #Pri nt the ending epoch t i me i n seconds 
52 pri nt( e nd :.ngTir.ie) 
53 e l apsedT.i:ne = endingTime-beginn:.ngTime 
54 ;Pri nt the e l apsed t ime i n seconds 
55 pri nt( e l a psedTi ite ) 
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Fig. G.7.  Buffon’s needle test using the Random module. 

If b-uffon -test._random.py 
;r 8-uffon 's needle test using the random library for 
ir randomizati on and series for calculation of sine and cosi ne 

4 

s import ti1t1e 
6 :.mport random as rnd 
1 ifl',por~ sys 

• 
9 def factorial ( n) : 

18 return 1 if ( n ==l or n::0 ) else n • factorial(n - l } 
11 
12 def sine( x, pi_est ) : 
13 sinx = 0 
14 for i i n range( 20) : 
1S s:.gn = ( -1)••i 
16 y = x• (p i_est/188) 
11 sinx += {(y .. (2.0'"'i+l})/factorial(2•i +l))•s ign 
18 return sinx 
19 
20 def cosine( x, pi_est) : 
21 COSX = 1 

22 sign = • l 
23 for i in range( 2, 4-8, 2) : 
24 y=x•( p :._est/180) 
2S cosx = cosx + ( sign•(y .. i ) ) /factorial( i ) 

26 sign = -sign 
21 return cosx 
28 
29 beginningf ifl'.e = ( time . t ime() ) 
38 rnd . seed(4) 
31 
32 sairple = int( sys .argv(2]) 
3.3 width = 1.0 Ii floor slat width 
34 need l e = 0. S # needle length 
3S num_hits = 8; nu:n_misses = 8 
.36 pi_est = 22/7 ,r Initial estimation of pi 
_r, x_lo = 0 . 0; x_hi = 3.0 r 1st end point 

38 y_lo = 8.0; y_hi = 4.8 
39 
40 liprint( .. Starting simulation") 
41 for i in range( sample) : 

42 x = ( x_hi x_lo ) • rnd. random() + x_lo 
43 y = ( y_hi • y_lo ) • rnd. random() + y_lo 
44 

4S a ngle = 360 .e • rnd.random() 

•• 
41 .. 
49 

xx = x + needle 
yy = y + needle 

Se if xx<x: 

cosine( angl e, pi_est) 
sine( angle , pi_est) 

Sl ( x, xx) = ( xx, x) 
S2 (y, yy) • (yy, y ) 
S3 , (x,y) now to left of (xx,yy) 
54 
SS if ( x < 0.0 a nd xx > 8 . 0 ) \ 
S6 or {x < 1 .0 and xx > 1.0) 
S1 or {x < 2.e a nd xx > 2.0) 
S8 or {x < 3.e and xx > 3 . 0) : 
S9 num_hits += 1 

68 else : 
61 num_misses += 1 ., 
c;.) ir riu:n_ hit.s ;, 1 : 

If 2nd end point 

64 pr= ( num_hits • 1.e) / {num_hits + nu11_misses) it fNquency 
6S pi_est = (2 .e • needle) / ( pr • widt h) .. 
61 irprint("The beginning epoch time in seconds is: ") 
68 print( beginningf ime) 

69 endingHme = time . tiite() 
70 wprint("The ending epoch tirr.e in seconds is: ") 
/1 print( ending f i .ne ) 

n elapsedrime = endinglime-beginninglime 
13 1tprint(,.The elapsed time in seconds is : ") 
74 print( elapsed1ime) 



          174 
 

 

 
Fig. G.8.  A code to conduct floating division on large numbers using the math module. 

1 import time 
2 import sys 
3 import ■ath 

4 

5 beginni ngTime = (time . time () ) 
6 
7 n = i nt ( sys . a r gv [ 2] ) 
8 
9 a = 10 

10 a a**n 
11 count = 0 
12 #pr i nt( a ) 

13 while a >= 1 : 
14 alnt = int ( a ) 
15 a=a/ ( 1+( ,000106529 ) ) 
16 d igitl = i nt ( mat h . log10( a ) ) 
17 # print ( digitsl ) 
18 d igit2 = aint - 1 
19 # print(digits2) 
20 if dig itl > 0 : 
21 dig it3 = d:git 2/ digit l 
22 # print(digits ) 
23 if cligit 3 == 0 : 
24 

25 

print(count1 2**count) 
p r int("The end • , a) 

26 break 
27 
28 ;tpr i nt(•The beginn ing epoch tine in seconds is: "' ) 
29 print( beginningTime ) 
30 e ndingTime = time . t i me() 
31 ;tpr i nt(•The ending epoch time in seconds is : • ) 
32 print( e nd i ngT ime ) 
33 elapsedlime = endingT:.me - begi nn ingTir:e 
34 ;tpri nt(•The elapsed t i.me i n seconds is: '") 
35 print( e l a psedTi m:e ) 
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Fig. G.9.  A code to conduct floating division on large numbers using the Numpy module. 

1 i mp o r t m!.,.IIJID: as np 
2 i mp o r t time 

3 i mp o r t sys 
4 

5 beginn i ngTime = (time .time () ) 
6 

7 n = i nt ( sys. . a r gv [2]) 
8 

9 a 10 
10 a = a"'*n 
11 co unt = 0 
12 #pri nt ( a ) 

13 ~hi l e a >= 1 : 
14 aint = int ( a ) 

15 a=a/ (1+(.000106529} ) 
16 digl tl = i nt ( np . l og10 ( a} ) 
17 # p r int ( digi tsl) 
18 digl t2 = a i nt - 1 

19 # print(digit s2) 
20 i ' digitl > 0 : 

21 digit3 = di git 2/ d i gitl 
22 # prin (di gits) 

23 if digit3 == 0 : 
24 # p r int( count, 2**count ) 
25 p r int("The e nd ", a} 
26 b re a k 
27 
28 #p r-i nt ( "The begirming epoch time in seconds is : • : 
29 pri nt( begi nningTi me ) 
30 e ndi ngTime = t ime . t i me () 
31 #pri nt ( "The ending epoch ti e in seco nds is : • ) 
32 pri nt( e nd • ngTime ) 

33 elapsedlime = end i.ngTime - beginni ngTime 
34 #p r-i nt ( "The elapsed time i n seconds i s: ") 

35 pri nt( elaps edTi me ) 
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Fig. G.10.  A code to generate a Fibonacci sequence to a given number of terms. 

1 # fibonacci. y 
2 # Co e t o ta e ca rn ate t he selected te for a 
3 # fibonacci seq ue ce 

4 

5 i por sys 
6 i or t • e 

7 
3 def f • bo acci ( ) : 

9 ==1: 
10 ret r 1 
11 el if - - 2: 
12 ret r 1 

13 el if > 2 : 
14 ret r f ibonacc i ( - 1 ) + i o acc' (n-2) 
15 
16 i me = ( rn e .time ( ) ) 
17 ( sys . a r gv [ 2] ) 
18 e (11 t e Val ) : 
19 fibonacci ( ) 
20 #pr i n ( "' The eg nn mg epoch tie ~n seconds is : "' ) 

21 pri nt ( begi.n gTi me ) 
22 e di gTi me = t ' e . time(} 
23 #pin ( "' Thee d"ng e oc tie n secon sis : n) 
24 p r~int ( e d 'i ngrime ) 

25 e laps.edT • e = e d.' e- begi grime 
26 pr i n ( "'The ela psed e i n seconds s: g) 

27 pri nt (ela ,sedT • e ) 
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Fig. G.11.  A code to invert a matrix using Lower-Upper Decomposition using Numpy, 1 / 
3. 

i mport !1!/!A/.)( as np 
2 i mport time 

i mport sys 
4 

5 def r a ndom_matrix( n, rnd, lo, hi ) : 
6 ii nxn matr ix r andom val s i n [ l o , hi ) 
7 r eturn ( hi - l o) • r nd .randor:,_sample ((n, n) ) + l o 
8 

9 def mat_inverse (m) :· 
10 n = len ( m) 
11 if n == 2 : 
1 2 a = m[ 0 ] [0 ] ; b = m[0] [ 1 ] 

13 c = m[ l ] 0] ; d = m[ l ] [ l ] 
14 det = (a*d} - ( b• c ) 
1 5 ret urn np. a r ray ( [( d/ det , - b/ det], 
16 [ - c/ det , a/ det]J ) 
17 r esult = np.copi•( m) 
18 ( toggle , lum, perm ) = mat_decompose (m) 
19 b = np . zer os( n ) 
20 for i in range ( n) : 
21 f or j i range( n ) : 
22 if i == pe r m[j ] : 
23 b [ j ] 1.0 

24 
25 
26 

else : #" weirdly rnecessary 
b [ j ] 0 . 0 

27 x = helper( l um, b} 
28 f or j in ra nge( n ) : 
29 r e sul t [ j ][ i ] = x [ j ] 

30 r eturn r esult 
31 
32 def hel pe r ( lum, b) :· 
33 n = len ( l um) 
34 x = np . copy (b ) 
35 fo r i in range ( l , n ) : 
36 sum = x[ i ] 
37 f or j in ra nge(0 , i ) : 
38 s um - = l um[ i ][ j ] •· x [ j ] 
39 x[ i ] = s um 
40 
41 x[ n- 1 ] / = l um[ n- l ][n - 1] 
42 i = n- 2 
43 <vhile i >= 0 : 
44 sum = x[ i ] 
45 for j in ra nge( i +l , n} :· 
46 s um - = l um[ i ][ j ] • x [ j ] 
47 x( i ] s um / l um [ i ][ i ] 
48 i · = 1 
49 r eturn x 
50 
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Fig. G.12.  A code to invert a matrix using Lower-Upper Decomposition using Numpy, 2 / 
3. 

51 def mat_determinant (m) : 
52 n = len(m) 

53 
54 

if n == 2 : 

a = m[0 ] [0 ] ; m[0 ] [1 ] 

55 c • m[ 1 ][0 ) ; d • m[ l ][l ] 

56 r e t urn ( a • d ) ( b • c ) 

57 
58 if n == 3 : 

59 
60 

61 
62 

63 
64 

65 

a = m[0 ][0 ) ; m[0 ][1 ] ; c 
d = m[ 1 ][0 ) ; e = m[ l ][l ] ; f 

g = m[ 2][0 ) ; h m[ 2][1] ; 
return ( a • ((e • i ) - ( f' h)) ) 

( b • ((d*i ) - ( f *g) ) ) 
( c • ((d*h) - ( e • g) ) ) 

rn [0 ][ 2 ] 
rn [ l ][ 2] 

rn [2][ 2] 
\ 

+ \ 

66 ( t oggle , l um, perrr ) - mat_decompose( m) 

67 
68 resul t = t o ggl e # - 1 or +1 

69 for i in r ange ( n) : 
70 result •= lurn [ i ][ i ] 

71 return result 
72 

73 de f mat_decompose( rn ) : 

74 # Crout ' s LU decoupos.i t i on 
75 toggl e = +1 # e ven 

76 n = len(m) 
77 !urn - np . copy( rn ) 

78 pe r m = np . a r ange( n) 
79 
80 for j i n range (0 , n- 1 ) : # by co lumn. note n- 1 
81 ma x np . abs ( l um[ j ][ j ] ) # o r lu~[ i, j ] 

82 piv j 

83 
84 for i n range ( j +t , n} : 
85 xi j = np .abs ( l um[ i ][ j ]) 

86 i f xi j > max: 
87 max = xi j ; pi v = i 
88 
89 if pi v ? = j : #: exchange rm,s j , piv 
90 l um[[ j , pi v ]] = l um( [ piv., j ]] # spec ial !iyntax 

91 

92 t = perm(pi v] # exchange items 
93 pe r m[ piv) pe r m[ j ] 

94 perrn [ j ] = t 

95 

96 toggle = • t oggle 
97 

98 xj j = l um[ j ][ j ] 

99 

100 
101 

102 

i f np . abs (xj j ) > 1.0e - 5 : ;!; ~ f >ejj ! "" 0.0 

for i in range (j +l , n) : 
xij = lurn( i ][ j ) / xjj 

l um[ i ]( j ] = xij 

103 f or k i n range ( j +-l Jn ) : 

104 l um[ i ][k ] -= xi j • lurn[ j ][k] 
105 return ( t oggl e , l um, perm ) 
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Fig. G.13.  A code to invert a matrix using Lower-Upper Decomposition using Numpy, 3 / 
3. 

107 def mat_equal (ml , m2, epsilon) : 

108 n = l e n ( rnl) 
109 for i in range ( n) : 

110 f or j i n r a nge ( n) : 
111 i f np . a bs (ml [ i ] [ j ] - m2 [ i ][ j ] ) > e psil on : 

112 r eturn f a lse 
113 r eturn Tr e 
114 
115 
116 #print ( " Inver t ion of a • , sys.argv[2J, • square mat rix with LU de compostion . ") 
117 #print( " The date a nd t i me is : • , str ft ime("~-il:m- 11:d %H : %M:il'.S" , llJ'ltime () ) , "\ n") 

118 
119 begi ni ngTi me = (time . time () ) 
120 rnatSize = i nt ( s ys . a r gv[ 2] ) 
121 np . set_ printoptions ( forrnatter ={ ' f oat ' : ' { : 8 . 4 ' } ' .format}) 

122 r nd = np . r andom.RandornSt at ,e ( l ) 
123 rn = rando _ rnatr i x (matS i ze , r nd , -10 . 0 , +10 . 0 ) 
124 # pr i nt ( " f he matrix has s hape: " , rn . s hape) 
125 #print( m} 

126 
127 if mat _determi na nt (m) == 0 : 
128 print (""\nno i nve r se " ) 
129 else : 

130 mi = mat _i nve r se (m) 
131 
132 # print(np.mat,mul (m, mi )) 
133 

134 
135 

# print(" \ ninve r s e f r om scr atch mat_ inverse() 

# print (mi ) 

136 
137 

138 
139 

140 
141 

142 

# print("fhe beginning e p-0ch 
print ( beginningTime ) 

e ndi ngTi me = t ime . time () 

#print ( " The e nding epoch t i me 
print ( e nd ' ngTi me ) 

time i n seconds 

i n seconds is : 

143 elapsedTime = e ndi ngTime - beginningTime 
144 #print ( " The elapse d t ime i n seconds is : ") 
145 print ( e l a ps.edTime} 

i s: 

" ) 

" ) 

") 
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Fig G.14.  Test code for data extraction using the Numpy library for inversion of a matrix. 

1 import ~~ as np 
2 import time 
3 import sys 
4 
5 # Mark the st art t i me. 
6 begi nningTime = (time . time() ) 
7 
8 # Randomization 
9 rnd = np . random. Ra ndomState (l ) 

10 # Extract t he input parameters 
11 index = int (sys . argv[2] ) 
12 

13 # Creating a random square matrix 
14 input Mat rix = np .zeros ( (index , index) , dtype int ) 
15 for i in range(0, index) : 
16 for j i n range (0, index) : 
17 input Matr ix[ i , j ]=np .random.randint (1, 10) 
18 
19 # calculating the i nverse matri x usi ng numpy . l inalg . inv 
20 resultinve rse= np .linalg. i nv ( i nput Matri x) 
21 
22 #pri nt("The begi nni ng epoch time in seconds is : ") 
23 print (beginningTi me) 
24 
25 endi ngTi me = time .time () 
26 #print( "The endi ng epoch t ime i n seconds is : ") 
27 print (endi ngTi me ) 
28 

29 elapsedTi me = endingTime -beginningTi me 
30 #pri nt( "The elapsed time in seconds is: ") 
31 print (el apsedTime) 
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Fig. G.15.  Test code for data extraction using the Numpy library for inversion of a matrix 
generated with the random library. 

1 # numpyinv_r andom. py 
2 # Test code t o create a ra ndom int eger matrix using 
3 # the random l i brary and invert it usi ng Numpy. 
4 

5 import ~ as np 
6 import time 
7 impor t random as rnd 
8 import sys 
9 

10 # Mark the sta rt time. 
11 beginningTime = (time . time ( ) ) 
12 

13 # Ext r act t he i nput par ameters 
14 irJdex = int ( sys .argv[2]) 
15 
16 # Creating a ra ndom square mat rix 
17 i lil putMat rix = np. zeros ( ( i ndex J index) J dtype i nt ) 
18 for i in range (0, index) : 
19 fo r j i n range (0J index) : 
20 inputMatr i x[ i Jj ] =r nd . randint (l J10) 
21 

22 # calculating the inver se matrix using numpy.li nalg.inv 
23 resultl nverse= np. linalg . i nv( inputMa1tr ix) 
24 
25 #pri nt( "The beginning epoch time i n seconds i s : ") 
26 print (beginni ngTime) 
27 
28 erid i ngTime = time . time () 
29 #pri nt( "The ending epoch time i n seconds is: " ) 
30 print (endi ngTi me ) 
31 
32 el apsedTime = endi ngTime -begi nningTime 
33 #print("The el apsed time in seconds is: ") 
34 print (el apsedTime ) 
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Fig. G.16.  A bubble sort routine conducted on a vector of letter permutations. 

1 # sort-test.py 
2 # A test of bubble sorting of 

3 # l etter permut ations laye ou 
4 # in a vector . 
5 
6 i mport t ime 
7 i mp o,~- sys 
8 
9 b•egirln i ngTime = (time.time () ) 

10 n = i nt ( sys. argv[ 2]) 

11 
12 lt 1 = 1 r 2 = ~r 3 tr4 = tr5 \ 

I LI I J ' t " J , .S 11 J ' r ", "q I .'I I p I J 

•o ' :J I n I I •m• J 'l ', "k I ., I j I J 

I i I., I h . J •g • J 'f " J II e I .'I 

l (I J • b . I •a ' ] 

n ltj = 0 

ar 1 = [ ' AAA' ] 

o i i n tr1 [0 : (0+n) ] .: 

for j :n . tr2 0 : (0+ -1) ] : 
for i l t r 3 [0 : ( - 2) ] : 

\ 
\ 
\ 

14 

15 
16 
17 
18 

19 
20 

21 
22 

23 
24 
25 

or 1 in t r4 [ 0 : ( 0+11 - 3 ) ] : 
for m :11 ltr5 0 : (0+ -4 ) ] : 

26 
27 
28 

29 
30 

31 

test_str = \ 

' ' . j oin(( i , j , k, , m) ) 

ar 1 .append (test_str ) 
n 111 = num + 1 

32 ar 1. sort l) 

33 so ted ( ar 1) 
34 

3 5 print( beg •• n :ingTime ) 
36 e dingTime = t ime.time () 
37 print(e ndingTime ) 
38 elapsedlime = \ 
39 e dingTime- egi ningTirme 
40 print( elapsediime) 
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Fig. G.17.  YAML configuration of 16 parallel executions of NumpyInv.py. Execution in 
the default Kubernetes name-spaces. 
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2 
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4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 
16 

17 
18 

19 
20 
21 

22 

23 
24 
25 

26 
27 

28 
29 

30 

31 

apiVersion: batch/vl 
ki nd: Job 
metadata : 

name : namespace-defaul t - job 
namespace : defaul t 
label s : 

app: names pace -def ault- job 
name : namespace-defaul t- j ob 

spec : 
template : 

metadat a : 
labels : 

app: namespace-def ault- j ob 
name : namespace-defaul t - job 

spec : 
contai ners : 
- name : numpy-inv-contai ner 

image : numpy- i nv-image 
args : [ "90"] 
resources : 

limi ts : 
cpu: "62m" 
memory : "64Mi " 

request s : 
cpu: "60m" 
memory : "60Mi" 

imagePul l Pol i cy : Never 
port s : 
- containerPort : 80 

restartPol icy : Never 
parallel i sm : 16 
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Fig. G.18. YAML configuration of four parallel executions of NumpyInv.py. Execution in 
four Kubernetes name-spaces for a total of 16 executions.  

1 api Ve rs f.on : bate h/ vl 

2. ki nd: Job 
3 met adat a : 

4 narr.e : namespace - 1 - job 

S. naJLespace : namespace - 1 

5 labels : 
l app : na"espace-1-job 

8 name : namespace- 1 - j nb 

9 spec : 

10 t lat e : 
11 rr.et ad at:a: 

1.2 l abels: 

13 app : namespace - l - jnb 

14 name: na'l!espace- 1 - j ob 
15 sp<>c : 

16 container s : 

17 - name: n py-inv-contain<>r 

18 image : numpy - i nv - ~mag<> 
19 args : [ "90 " ] 

20 res.our-ces. : 

21 limits : 

:U cp u : "&2 • 
2:S memor y : · 64Mi • 

24 requests : 

2~ cp u : " &0 " 

26 memor y : " 50Mi -
27 illlageP-ul H>ol icy : r,ever 

21! po r t s : 

29 - c ont ai ner.Port : K0 

;J0 restart:i>ol ~c y: ' lever 
31 para1: .. • ism : 4 

.:!2. 

.:!.:I ;r Job 2 

.:!4 

3~ ;r Job .i 

36 

.:!7 apiVers f.o n : batch/~! 

.:Ill kind : Job 
39 met adat a : 

'l0 name : namespace - 4- job 

41 na espace : namespace-4 

42 labels : 
4.:1 app : na"espace-4-job 

44 name : namespace-4- j ob 

4~ spec : 
46 t e plat e : 

47 e t adata: 

4l! labels: 

49 app : namespace-4-job 
50 name : na,res pace-a- j ob 

Sl sp<>c : 

5.2 

5.:1 
~4 

5~ 

56 

57 
5S 

~9 

50 

61 

62. 

6.i 

conta e rs : 
- name: nt.rnpy-inv-container 

image : numpy -inv -~mage 
args: [ "90 " ] 

resources : 

limi1:s : 
cpu : " 62. • 
memor y : • 61'.lNi ,. 

req uests : 

cp u : " 00 • 
me or y : " 60M.i • 

imageP ul lP-olicy: r,ever 
64 po r t s : 

6~ - con t ai nerPort : 1:10 
66 rest.art:P-ol icy: "'4ever 

67 parall.el. ism : 4 
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Fig. G.19. YAML configuration of four parallel executions of NumpyInv.py, each in four 
Kubernetes name-spaces. 
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10 

11 

12 

13 

14 

15 
16 

17 
18 

19 
20 
21 

22 

23 
24 
25 

26 
27 

28 
29 

30 

31 

apiVersion: batch/vl 
ki nd: Job 
metadata : 

name : namespace-defaul t - job 
namespace : defaul t 
label s : 

app: names pace -def ault- job 
name : namespace-defaul t- j ob 

spec : 
template : 

metadat a : 
labels : 

app: namespace-def ault- j ob 
name : namespace-defaul t - job 

spec : 
contai ners : 
- name : numpy-inv-contai ner 

image : numpy- i nv-image 
args : [ "90"] 
resources : 

limi ts : 
cpu: "62m" 
memory : "64Mi " 

request s : 
cpu: "60m" 
memory : "60Mi" 

imagePul l Pol i cy : Never 
port s : 
- containerPort : 80 

restartPol icy : Never 
parallel i sm : 16 
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G.5  Python Code Execution Analysis 

 Candidate functions were evaluated for stationarity in stand alone execution and as 

functions executing in pods on a Minikube cluster. A comparison of distribution 

characteristics, mean, standard deviation, and skew was evaluated for both the 

empirical case of data extracted, as well as an ideal distribution for the same mean and 

standard deviation. 

Individual cases were examined for both serial and parallel executions. As a general rule, 

the ideal case was forward of the empirical case. See Figs. G.20. With a single exception, 

floating point division, the mean time of execution for parallel execution hovered 

around 20 times the average serial execution time. In all cases, the distribution was 

elongated within the parallel analysis. 

  G.5.1  Serial Execution 

  In Fig. G.20, Serial execution timing analysis of candidate Python functions indicate 

that the execution time of any individual function follows closely to a normal 

distribution. This indicates, by the central limit theorem, that a large number of 

independent factors influence the execution time of the function or that the execution 

time is subject to near additive white Gaussian noise. 

  In most cases, the cumulative distribution of actual and ideal (based on the mean and 

standard deviation) of the candidate python codes track very closely, with the skew in 

both cases mostly in the order of -1 and in no case being above the first order. A notable 

trend is that an increase in skewness occurred as the empirical and ideal graphs 

converged. 
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Fig. G.20.  Comparison of alternate subroutines in Python code, serial execution. (a) and 
(b) compare the floating point division test using the Math library a routine using the 
Numpy library for convergence testing. See comparison of Fig. 4.5 for (c) and (d) for 
Buffon’s needle test routines and (e) and (f) for matrix inversion. 
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  G.5.2)  Parallel Code Execution)  In Fig. G.21, parallel code execution was conducted 

on a four name-space Kubernetes cluster with sixteen functions executing in separate 

pods per each name-space. Execution was initiated from a Kubernetes YAML file in the 

configuration of G.19. The data set was collected over a series of 10 tests. 

Timing analysis of candidate Python functions indicate that the execution time of any 

individual function follows closely to a normal distribution. Like the serial case, the 

possibility of influence of many independent factors or near additive white Gaussian 

noise is suggested by the empirical cumulative distribution near the ideal normal 

distribution. The large number floating point division characteristic remains an outlier. 

  In all cases, the cumulative distribution of empirical and ideal the candidate python 

codes track very closely, with the skew in no case being above the -1 order. Each graph 

is separated at the empirical and ideal by a greater margin than in the serial case. This 

tends to indicate some degree of effect from the overhead of running on a Kubernetes 

environment. 
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Fig. G.21. Comparison of alternate subroutines in Python code, parallel execution.  (a) 
and (b) compare the floating point division test using the Math library a routine using 
the Numpy library for convergence testing. See comparison of Fig. 4.6 for (c) and (d) for 
Buffon’s needle test routines and € and (f) for matrix inversion. 
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  The proximity of the tested functions’ empirical cumulative distribution and the 

idealized CDF with the same mean and standard deviation was accompanied by similar 

measures of skew: -.6885 and .4918 respectively. These results closeness to those from 

a normal distribution suggested that a large number of independent factors influenced 

the execution time of the functions. The central limit theorem informs this 

consideration. However, the appearance of a long tail outlier at the longest execution 

time as well as wide percentages of dispersion (3.44 percent and 3.30 percent 

respectively) prompted further evaluation in the parallel context of the chosen 

orchestration platform. 

  The statistical evaluation of the functions considered their alignment with the curve 

which most closely matched their cumulative distribution. In both cases above, the knee 

and inflection points of the curve where not symmetrical. However, a low skewness (3rd 

order moments of .5666 and .4918 respectively), prompted evaluation of the 

cumulative distribution and comparison to normal. The results of this analysis are in Fig. 

G.20. 

G.6  Unscheduled Parallel Container Data 

 The Figs. G.21 (a-f) display the execution time of Python functions execution times 

executing from the parallelism tag in a Kubernetes YAML file (see Fig. G.17) shading on 

the base of each column indicates name-space (NS) in the Kubernetes cluster. Figs. a - d 

all execute on the same name-space, therefor have the uniform black color. The bottom 

Figs. (e and f) are executed in four separate name-spaces. This is a convention used 

throughout to depict name-spaces running in parallel. 



          191 
 

 

  The function is a matrix inversion using the Numpy library. Figs. in the left column (a, 

c, e) depict execution on a Dell Inspiron. Figs. on the right (b, d, f) depict execution on a 

Gateway i3 with 10GiB memory. Both are using he default CPU and memory allocations 

on a Minikube environment. 

  Data was ordered from the earliest start time to the last start time. The top Figs (a 

and b) depict the execution on the default name-space without resource quota 

specification. Figs. c and d are executed on the default name-space with limits at the 

default settings (see Fig. G.22). 

 

 
Fig. G.22.  Resource quota set to the Minikube defaults at the limits.  CPU and memory 
are set to requests at 5 milli CPUs and 3 MegaBytes per pod respectively. 
 

G.7  Platform Comparison 

  The execution times of functions are displayed in the following figures.  Panels (a-f) 

display the execution time of Python functions on two platforms, a Dell Inspiron laptop 

running Linux LTS 22.04, and a Gateway i3 also running Linux LTS 22.04. Each function is 

the same, executing a Python matrix inversion routine activated by the parallelism tag in 
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11 

apiversion : v1 

ki nd : Resour ceQuot a 
metaidata : 

name : quota-def ault 
names pace : defaul t 

spec : 
llair d : 

req uests . cpu : "1920" 
limits . cpu : "2000m" 
requests . memory : 1000Mi 
l imits.memory : 2048Mi 
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a Kubernetes YAML file.  The name-space shading follows the convention as in Appendix 

G.6. 

  Panels (a) and (b) depict the execution on the Python code on a single, default 

namespace within the Minikube cluster.  The start time (0.0 seconds in the graphs) is 

the floor taken from the earliest execution time start.  The remaining pods are placed in 

order of function execution start time. Panels (c) and (d) depict the same function 

execution, but in a quota based namespace. The quota matched the default resources 

assigned to the default quota. Panels (e) and (f) depict execution of the same Python 

function split out into 4 namespaces. Each divided the default amount of resource 

equally, and each namespace executed the code in 4 parallel running pods. 

  The platform of execution influenced the characteristic of the run-time and 

execution.  This was not tested for each function used in this experiment, but this 

characteristic was notable on other platforms used in further tests. Finally, the 

phenomena of multiple start times and a reduction in overall execution time bolstered 

the argument that parallelism characteristics effect the overall performance. This was 

central to the basis for the final test of the experiment. 
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  G.7.1)  Unscheduled Pod Data: 

 
Fig. G.23.  Graphical depiction of a Python function execution times on a Kubernetes 
cluster executing in parallel.  The x-axis is functions numbered x = 1-16. The y-axis is the 
execution time (t_x) stacked onto the next nearest integer second. 
  

( a ) (  b  )  

( c ) (  d  )  

( e ) (  f  )  

10 

10 12 14 16 16 

10 

10 12 14 16 16 

16 



          194 
 

 

 
G.7.2  Scheduled Pod Data 

  The Figs. G.24 (a-f) display the execution time of Python functions executing from the 

parallelism tag in a Kubernetes YAML file. The name-space shading follows the 

convention as in Appendix G.6. As in Appendix G.6, the platform of execution influenced 

the characteristic of the run-time and execution. 

  Data was ordered from the earliest scheduling time to the last scheduling time. The 

graph indicates a wide gap in the timing for configuration of the name-spaces and pods. 

Additional metrics were sought to evaluate the timing data of functions executing in an 

orchestrated container environment.  
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Fig. G.24.  Graphical depiction of a Python function execution times arranged in order of 
Kubernetes cluster scheduling by Kubernetes name-space. The x-axis is functions 
numbered x = 1-16 in the default name-space and 1-4 in separate name-spaces. The y-
axis is (t_x) stacked onto the next nearest integer second. 
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