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ABSTRACT 

ENHANCEMENT OF NETWORK ANOMALY DETECTION USING ARTIFICIAL 

INTELLIGENCE TECHNIQUES     

(August 2024) 

Toya Acharya, BE, Pokhara University 

Chair of Advisory Committee: Dr. Annamalai Annamalai 

Co-Chair of Advisory Committee: Dr. Mohamed F. Chouikha 

 

  Traditional signature-based network intrusion detection systems, which capture 

network attributes, are inadequate against zero-day attack. The smaller number of attacks 

creates an imbalanced dataset, the major problem during anomaly detection. Machine 

Learning (ML) and Deep Learning (DL) approaches are promising for network anomaly 

detection because they can efficiently analyze big network traffic data for malicious 

activities and detect zero-day attacks. The appropriate selection of the ML/DL algorithm, 

hyperparameter tuning, and techniques, such as sampling methods, ensemble methods, and 

reduction of number of classes, can enhance the anomaly detection performance of the 

anomaly detection methods on an imbalanced network intrusion-based dataset.  

The efficacy of various traditional ML models such as Random Forest (RF), J48, 

Naïve Bayes, Bayesian Network, Bagging, AdaBoost, and Support Vector Machine (SVM) 

is examined. Different combinations of deep learning models, including convolutional 

neural networks, bidirectional long-short term memory (LSTM) models, ensemble 

techniques, sampling techniques, and class reduction approaches, are applied to different 

sets of network-based intrusion datasets (KDD99, UNSW-NB15, CIC-IDS2017). These 
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experiments are conducted using different tools (WEKA, Jupyter Notebook) on the 

Anaconda platform.  

Investigation results reveal that traditional ML models are suitable for smaller data 

and low computational power. Deep learning models outperform huge datasets with large 

numbers of features but require significantly more computational power. The proposed 

heterogeneous ensemble method, which combines a number of different models along with 

a wise selection of hyperparameters and class size reduction techniques, has been 

demonstrated to significantly enhance anomaly detection performance on communication 

network-based intrusion datasets.  

Implementing different sampling techniques on different training and testing 

dataset combinations provided insight into application sampling techniques to deal with 

imbalance network intrusion datasets. The sampling is only efficient for the single set of 

working data, but the class reduction method to deal with class imbalance problems results 

in more efficient performance in regard to the single or different set of training and testing 

data given for network anomaly detection. The overall combination of results and 

conclusions will provide a comprehensive study of artificial intelligence techniques to 

enhance network anomaly detection in communication networks. 

Index Terms—ADASYN, Bi-LSTM, CIC-IDS2017, class reductions, CNN-

BLSTM, deep learning, heterogeneous ensemble learning, imbalance dataset, KDD99, 

LSTM, machine learning, network intrusion detection system, NSL-KDD, Random Over 

Sampling (ROS), Random Under Sampling (RUS), SMOTE, SMOTEENN, UNSW-

NB15. 
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INTRODUCTION  

I. Overview  

A system is deemed secure when the three core principles of computer security—

Confidentiality, Integrity, and Availability (CIA)—are effectively upheld  [1]. These 

principles ensure that data is accessible only to authorized users, remains accurate and 

unaltered, and is available when needed. An Intrusion Detection System (IDS) plays a 

crucial role in maintaining these security standards by continuously monitoring and 

analyzing system activities. It detects potential threats by assessing instances where the 

CIA principles may be violated, thus helping to identify and mitigate risks before they can 

compromise the system's security. 

With the invention of information and technology, the most crucial information is 

transmitted in the form of bits from source to destination. The transmitted information can 

be voice, image, or data, containing banking information, personal information, or network 

traffic. Various tools or methods are available to detect and prevent intruders. Anomaly is 

a pattern in the dataset that does not fit into the usual behavior of the data, and some 

detection techniques are required to detect it. Outliers and anomalies are sometimes used 

interchangeably in the field of anomaly detection. Anomaly detection has numerous 

applications, including business, network intrusion detection, health monitoring systems, 

credit card fraud detection, and fault detection in critical information systems. Anomaly 

detection is important in cyber security for achieving solid protection against cyber 

adversaries. 

_______________________________________ 

This Dissertation follows the style of the Publication Manual of the IEEE standards. 
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II. Motivation for Research 

Information Technology (IT) and Operational Technology (OT) systems are 

interconnected via a network to communicate properly. The network between those 

communication devices is the backbone of modern society to establish seamless 

communication across the globe. Network anomalies, behavior activities deviating from 

normal behavior, can be indicative of malicious activities such as intrusion attempts, 

malware propagation, or even system failures. Detecting and mitigating these anomalies is 

of utmost importance to ensure the integrity, confidentiality, and availability of network 

resources.  

The motivation for research in network anomaly detection using machine learning, 

deep learning, and artificial intelligence arises from developing more robust, accurate, and 

efficient solutions to safeguard network infrastructures. By exploring and advancing these 

technologies, we can achieve the following benefits: 

a. Improved Detection Accuracy: machine learning, deep learning, and artificial 

intelligence algorithms have the potential to identify complex and subtle anomalies 

that may be overlooked by traditional methods. 

b. Early Threat Identification: network attacks are becoming increasingly 

sophisticated, making it crucial to detect anomalies at their earliest stages. 

c. Adaptability to Dynamic Environments: networks are dynamic systems with ever-

changing traffic patterns, making it challenging to define fixed rules for anomaly 

detection. AI-based network anomaly detection can adapt and learn from network 

traffic patterns, allowing them to evolve and respond to new and emerging threats 

continuously. 
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d. Reduced False Positives: false positives can lead to alert fatigue and unnecessary 

overhead on network administrators. By employing advanced learning algorithms, 

hyperparameter tuning, and data preprocessing techniques, researchers can develop 

models that minimize false positives, ensuring that only genuine network anomalies 

are flagged for investigation. 

III. Summary of State-of-the-Art of Network Anomaly Detection 

Network Intrusion detections are classified into two categories, these are signature-

based IDS and anomaly-based IDS [1]. The main drawback of the SIDS is that it fails to 

detect zero-day attacks as those new types of attack signatures are not included in the SIDS 

signature database. AIDS overcomes the SIDS's drawbacks by modeling normal behaviors 

using machine learning, statistical-based, or knowledge-based methods [1]. Anomaly-

based detection can also produce false results caused by changes in user habits. The 

machine learning model for network intrusion detection is an example of anomaly-based 

IDS. Anomaly-based IDS efficiently identifies network-based intrusion, including zero-

day attacks. 

Most classical research either applies a single data set such as NSL-KDD or CUP99 

to train their model. Unfortunately, training a model with one specific data does not 

guarantee its robustness towards certain unknown or modified attack patterns. To achieve 

it, training a machine learning model with different data can be vital. On the other hand, 

most of the existing machine learning methods apply a standalone classifier with classical 

learning and classification ability. On the contrary, research reveals that different 

algorithms perform differently for the same input data and show varied results. On the other 

hand, anomalies, being a small entity over large training samples, undergo a class-
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imbalance problem and hence push a machine learning model to show higher inaccuracy 

or false-positive rate. Moreover, unlike the classical standalone classifier-based approach, 

ensemble learning with the maximum voting concept can be of great significance to ensure 

the reliability of the proposed NIDS model. The data preprocessing techniques are also 

used to cope with the data imbalance problems, including class size reduction and 

sampling. The class sampling techniques manipulate random data depending on the 

sampling techniques used. Working on reduction class by aggregating minor classes into a 

new class creates a more balanced dataset to detect anomalies in the computer network. 

Deep learning can extract better representations for creating efficient anomaly 

detection models. The traditional machine learning-based network anomaly detection 

algorithms are more suited for small datasets and are mostly performance-dependent on 

how the feature engineering is implemented. The split ratio is one of the dominant elements 

influencing the performance of traditional machine learning-based anomaly detection 

methods. The traditional ML methods are simple and have low resource consumption. Still, 

for huge datasets and large features, poorly performed and traditional ML cannot be 

worked on computer vision, natural language processing, and image translations.  

The deep learning method overcomes the problems in traditional ML, such as being 

suited for huge datasets and large numbers of features. The performance of the deep 

learning-based anomaly detection algorithm depends on the number of neurons, number of 

hidden layers, types of activation function, number of samples (batch size), and epochs 

(iterations) during DL model training and testing. Selecting those hyperparameters, 

training testing data ratio, and architecture of neural network in deep neural networks is 

vital in increasing the detection accuracy of network anomaly detection systems.  
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CNN is mostly used in image datasets where the lower layer’s neurons reduce the 

network’s features, usually identifying important small-scale features, such as boundaries, 

corners, and intensity differences. Then in higher layers, the network combines the lower-

level features to form more complex features such as simple shapes, forms, and partial 

objects. On the final layer, the network combines the lower features to produce the output 

or classification results.  An LSTM works differently than a CNN because an LSTM is 

designed to retain long-range information so that the information is remembered and not 

lost in a long sequence. Bi-LSTM adds one more LSTM layer, reversing the information 

flow direction and overcoming the vanishing gradient problems.  

Machine learning models have been successfully employed in a variety of artificial 

intelligence tasks, including natural language processing, machine translation, voice 

recognition, and image classification. However, these models are susceptible to various 

threats, such as unknown attacks, anomalies, and adversarial examples. To address this, 

machine learning models are utilized to detect unknown attacks and anomalies. On the 

other hand, adversarial examples are intentionally crafted to deceive well-trained machine-

learning models. These adversarial examples are virtually indistinguishable from the 

original inputs to human observers, yet they result in misclassification by machine learning 

or deep learning classifiers. Similarly, the Natural language processing model is also useful 

for processing the network traffic utilizing the word embedding methods.  

The existence of adversarial attacks raises significant concerns regarding the safety 

of critical infrastructure systems like flight control systems, healthcare systems, self-

driving cars, and more. The potential impact of these attacks on such mission-critical 
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systems cannot be understated. There are a few network intrusion datasets available for 

research purposes, such as KDD99, NSL-KDD, UNSW-NB15, Kyoto+, and CAIDA.  

IV. Problem Statement and Research Objectives 

This dissertation research study solves the different problems that arise in anomaly 

detection using artificial intelligence methods on network anomaly detection datasets, 

including KDD99, NSL-KDD, and UNSW-NB15. The machine learning platform 

effectively detects zero-day attacks. The main problem in the network intrusion detection 

system is the resource and time consumption during the detection of network attacks. So, 

the machine learning model performance deteriorates the capacity of the intrusion detection 

system in the highly growing network system. Feature reduction techniques do not always 

improve the performance of the machine learning model. 

The single standalone machine learning models cannot detect the network anomaly 

efficiently because the different ML models produce different performances based on the 

nature of the dataset. Similarly, the amount of anomaly data is always lower in ratio to the 

benign dataset. The class imbalance problems arise during anomaly detection in case of 

rare attacks. With the increase in the terminals connected to the internet, the amount of data 

is humongous; hence, the traditional machine learning model cannot handle it. Those deep 

learning models are not enough to capture past information for future states. Also, those 

adversarial attacks are created to fool the machine learning and deep learning models 

during anomaly detection. The hyperparameter selection was not implemented during most 

of the previous research.  

The problem itself is separated into the following sub-problems: 

a. The traditional anomaly detection methods have a high false positive ratio. 
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b. Many attacks class creates an imbalance in the dataset. 

c. The selection of a machine learning model for the different network anomaly 

datasets is challenging. Even anomaly dataset of the same nature acts differently 

during network anomaly detection. 

d. Single algorithms do not always have a high anomaly detection rate on the given 

network dataset. 

e. The time consumption during the training and testing period affects the 

performance of the intrusion detection model.  

f. Selecting instances in the class, training, and testing data size is very challenging, 

and class imbalance is one of the main problems in the machine learning-based 

intrusion detection system.  

g. The shallow neural network model does not store the past attack information. 

h. The duplication of the previous network anomaly detection research work is not 

easy without hyperparameters information. 

i. Adversarial traffic is the latest attack method used by hackers. 

j. Label generation during the network anomaly detection dataset is time-consuming 

and requires a skilled person. 

k. Class imbalance problems can be working with the distribution of data in different 

classes. 

l. The crucial selection of hyperparameters for the neural network improves the 

performance.  

The following research questions are considered to solve the above sub-problems. 

a. What are machine learning models highly suitable for the given anomaly dataset? 
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b. Do multiclass or binary class datasets perform better on a network anomaly dataset? 

c. What is the effect of target classes on the performance of the machine learning 

model? 

d. Is there any relation between the size of the dataset during training and testing on 

the Machine learning model? 

e. Does only feature reduction increase the performance of the machine learning 

model? 

f. Are those created features highly related to the target class on the intrusion dataset? 

g. Do the Recurrent Neural Network-based models enhance the anomaly detection 

performance? 

h. How did those hyperparameters tunning enhance the network anomaly detection 

performance? 

i. How do the different sampling techniques work for the different combinations of 

training and test datasets? 

j. Does class reduction by aggregating the minor classes into a new single class 

enhance anomaly detection?  

V. Anticipated Broader Impact of the Study 

The anticipated broader impacts of the study are as follows: 

a. Investigate network anomaly datasets, features, and types of network attacks. 

b. Select the network anomaly datasets used for measuring the performance of 

machine learning and deep learning. 

c. Investigate the size of train and test data sets during training and testing the machine 

learning and deep learning. 
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d. Investigating the performance of machine learning, deep learning, and generative 

adversarial algorithms on binary and multiclass network anomaly datasets. 

e. Determine if the investigated feature correlates to the target class and increases the 

performance of machine learning and deep learning. 

f. Investigate the effect of data distribution on attack classes and the effect of 

performance of machine learning and deep learning. 

g. Investigate the rare attacks on network anomaly datasets and the performance of 

machine learning and deep learning. 

h. Investigate the ensemble methods to enhance anomaly detection performance. 

i. Investigate the hyperparameters for deep learning and sequential recurrent neural 

networks. 

j. Perform an experimental study on publicly available network anomaly datasets to 

investigate the objective of this study. 

k. Investigate the different types of sampling methods to deal with the data imbalance 

problem. 

l. Investigate the different combinations of sampling methods in training and testing 

datasets. 

m. Evaluate the experimental results. 

VI. Significance of the Study 
The significance of this study contributes to the fields of network anomaly detection 

systems and different artificial intelligence methods. The primary significances and 

contributions are as follows: 
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a. To show the relation between the number of the target class and the performance 

of the machine learning and deep learning model. The reduction of the number of 

classes increases the performance of anomaly detection models. 

b. To ascertain if feature reduction does not always improve the performance of the 

machine learning model. So, creating highly correlated features with the output 

class improved the model’s performance for anomaly detection. 

c. To determine if the performance evaluation of the anomaly detection model varies 

depending on the training and test methods used during model design. Also, the 

size of training and testing data produces different performances. 

d. To study the different machine learning and deep learning models on different 

network anomaly datasets to provide insight into creating the required anomaly 

detection dataset. 

e. To enhance the anomaly detection performance using ensemble methods rather 

than using single ML/DL models. 

f. To preserve the past anomaly during the anomaly detection for deep learning-based 

network anomaly detection models. 

g. To study the class reduction techniques to deal with the class imbalance problem 

for anomaly detection on network datasets. 

h. To study sampling and their combinations on training and testing datasets during 

network anomaly detection using artificial intelligence methods.  

VII. Dissertation Outline 

In this dissertation research study, the researcher presented different techniques to 

enhance anomaly detection using machine learning, deep learning, and artificial 
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intelligence methods. This study investigated how machine learning, deep learning, and 

artificial intelligence models efficiently detect anomalies on a binary class network dataset 

as compared to multiclass network datasets. The imbalance of the dataset on target classes 

degrades the performance of the anomaly detection model. Similarly, the hyperparameters 

tunning, using the recurrent neural network-based model and adversarial learning, 

enhanced the performance of the network anomaly detection models.  

Chapter 1 provided a detailed study of the heterogenous ensemble techniques to 

detect the anomaly.  The comparison of the different class performances of the different 

models, including Naïve Bayes, J48, Random Forest, and more, is investigated in Chapter 

2. The efficacy of the deep learning models is explained in Chapter 3 and Chapter 4 with 

hyperparameter tuning for anomaly detection. The deep learning-based anomaly detection 

is enhanced using the sampling techniques which is explained in Chapter 5 and Chapter 6. 

Detailed research includes the different sampling techniques along with combinations of 

training and testing datasets in Chapter 7. The conclusion and future work conclude this 

dissertation work. 

. 
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CHAPTER 1. EFFICACY OF HETEROGENEOUS ENSEMBLE ASSISTED 

MACHINE LEARNING MODEL FOR BINARY AND MULTI-CLASS 

NETWORK INTRUSION DETECTION 

Abstract- The exponential rise in internet technologies and allied applications 

encompassing a significantly large number of networked devices has alarmed academics 

to achieve more effective and robust security solutions. Undeniably, digitization has led to 

revolution globally; however, the security threats, breaches, and subsequent losses indicate 

the need for a robust cybersecurity solution. Unlike classical intrusion detection systems 

(IDS), network IDS (NIDS) has been becoming more challenging due to continuous 

changes in attack patterns and anomaly behavior. Solution data-driven machine learning 

methods have exhibited better by learning over network traffic information and detecting 

anomalies; however, their generalization over a network with both known and unknown 

patterns remains questionable. Moreover, most of the classical approaches fail to address 

the key issues of class imbalance, level-of-significance centric feature selection, 

normalization, and over-fitting problems, resulting in different performances by varied 

machine learning models.  

In this research work, the novel and robust heterogeneous ensemble machine 

learning model is developed to detect anomalies in NIDS. The proposed model first applies 

sub-sampling to alleviate the class-imbalance problem of NIDS datasets. Subsequently, 

performing normalization using the Min-Max algorithm, it mapped the input data in the 

range of 0 to 1, thus alleviating overfitting and convergence. The feature reduction is used 

to reduce the features; it retained the most suitable features without imposing 

computational overheads, often in meta-heuristic-based approaches. Finally, the proposed 
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NIDS solution designed a Heterogeneous ensemble learning model with J48, k-NN, SVM, 

Bagging, AdaBoost, and RF algorithms as base-classifier to perform two-class as well as 

multi-class classification over feature-selected NSL-KDD, KDD99, and UNSW-NB-15 

datasets. Performance assessment in terms of true-positive rate, false-positive rate, and 

AUC revealed that the proposed NIDS model exhibited better performance than the 

standalone classifiers and was superior to other existing anomaly detection methods.  

Keywords—Heterogeneous ensemble learning, imbalance dataset, network 

intrusion detection system, machine learning, 

 
I. INTRODUCTION 

 The majority of the classical research either applies a single data set such as NSL-

KDD or CUP99 to train their model. Unfortunately, training a model with one specific data 

does not guarantee its robustness towards certain unknown or modified attack patterns. To 

achieve it, training a machine learning model with different data can be vital. 

 On the other hand, most of the existing machine learning methods apply a standalone 

classifier with classical learning and classification ability. On the contrary, research reveals 

that different algorithms perform differently for the same input data and show varied results. 

It questions the acceptability of standalone solutions for anomaly detection in a real-time 

cyber-ecosystem. On the other hand, anomalies, being a small entity over large training 

samples, undergo class-imbalance problems and hence push a machine learning model to 

show higher inaccuracy or false-positive rate. It demands a data-driven model to employ a 

specific sub-sampling concept followed by significant feature selection to ensure reliable 

classification without undergoing local minima and convergence issues. Moreover, unlike 
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the classical standalone classifier-based approach, ensemble learning with the maximum 

voting concept can be of great significance to ensure the reliability of the proposed NIDS 

model.  

 Considering the above research demands, gaps, and allied scopes, a state-of-art new 

and robust heterogeneous ensemble machine learning-assisted NIDS solution is proposed 

for anomaly detection in network flow data in this paper. The heterogeneous ensemble 

model consists of a number of different base machine learning classifiers for the network-

based intrusion detection system. Unlike classical methods, the proposed model embodies 

multi-level enhancement, including data sub-sampling, normalization, feature reduction, 

and Heterogeneous ensemble learning to perform intrusion detection over the different 

NIDS datasets NSL-KDD, KDD99, and UNSW-NB15. Heterogeneous ensemble classifier 

comprises state-of-the-art, better-performing algorithms like Naïve Bayes, J48 algorithm, 

k-NN algorithm, SVM, Boosting, Bagging, AdaBoost, and RF were used to perform binary 

as well as multi-class classification. The simulation performance over the different input 

network flow datasets revealed that the proposed Heterogeneous ensemble-based machine 

learning model outperforms other standalone algorithms in true-positive and area-under 

ROC (AUC).  

 The remaining sections are divided as follows. Section II discusses the key related 

works about the IDS and NIDS solutions, followed by the system model in Section III. 

Simulation results are discussed in Section VI, which is followed by a conclusion and 

inferences in Section V. References are given in the reference section of this dissertation.  
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II. RELATED WORK 

 Authors [2] applied a Support Vector Machine (SVM) algorithm over the NSL-

KDD dataset, where the highest detection accuracy was observed as 99.92%. Later, 

realizing the efficacy of SVM with reduced feature learning, authors [3]applied SVM with 

KPCA and GA; however, the accuracy of 96% contradicts [2]. It questions the reliability of 

the performance is projected. In [4], the authors applied particle swarm optimization (PSO) 

assisted SVM classifier, where PSO was applied as a feature selection model, while SVM 

performed two-class classification. Interestingly, unlike [2] and [3], authors in [4] could 

achieve the highest accuracy of 92.90% over the KDD99 dataset. In [5], decision-tree and 

SVM algorithms were applied for intrusion detection over the KDD99 dataset, where the 

SVM classifier obtained the highest accuracy of 89.02%. Random forest (RF) algorithm 

was applied in [6] to perform intrusion detection on the NSL-KDD dataset the detail about 

ensemble learning is provided on this [7] research paper. The highest accuracy could be 

obtained by 99.67%, which was higher than the J48-based algorithm. Similarly, in [8], RF 

algorithm with weighted K-Means clustering applied over the KDD99 dataset to perform 

intrusion detection. The highest efficiency could be observed as 98.3%. realization 

limitations of the classical SVM, especially with large data and high-feature size, authors 

[9] proposed an optimal allocation-based least square SVM (OA-LS-SVM) algorithm for 

intrusion detection. In [10], the authors applied the Genetic Algorithm (GA) for feature 

selection and weight estimation of SVM to perform anomaly detection.  

 Authors [11] proposed a conditional variational autoencoder (CVAE) along with 

long short-term memory recurrent neural networks (LSTMRNNs) to perform intrusion 

classification. The authors [12] stated that their proposed model could be superior to other 
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machine learning models like SVM, k-NN, and Bayesian classifiers to perform anomaly 

detection and classification. In [13], SVM and Naïve Bayes algorithms were used to perform 

intrusion classification, where the first was found superior in terms of detection accuracy. 

Similarly, in [14], Naïve Bayes, SVM, and RF algorithms were used to perform DoS 

detection in the wireless network. Linear SVM-based lightweight IDS was developed in 

[15]; however, its superiority over radial basis function (RBF) and polynomial kernel-based 

SVM seems limited. In [16] applied ANN Bayesian Net-GR algorithm with ANN and 

Bayesian Net algorithms as a base classifier to perform two-class classification over Gain 

Ratio (GR) selected features to perform intrusion detection.  

 A similar effort was made in [17], where a mutual information-based algorithm was 

designed to perform feature selection followed by two-class classification towards intrusion 

detection. Realizing that the selection of a suitable set of features can improve accuracy, 

authors [18] applied the self-taught learning (STL) based IDS model, where deep learning 

was applied as a feature selection method while SVM performed two-class classification. 

Principal component analysis (PCA) and linear discriminant analysis (LDA) were applied 

in [19] with Ant Lion optimization for feature selection, followed by Artificial Neural 

Network (ANN) based classification to perform DDoS attack detection. In [20], authors 

used k-NN for data clustering followed by extreme learning machine (ELM) based two-

class classification for intrusion detection. Authors [21] designed a transfer learning-based 

anomaly detection model to explore the common latent information and changes in 

behaviors. An ensemble model comprising a decision tree, RF, k-NN, and deep NN was 

designed in [22] to perform intrusion detection using the NSL-KDD dataset. Authors [22] 

found that the base classifiers DT performed better than other methods, with the highest 
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accuracy of 84.2%, while the ensemble model exhibited an accuracy of 85.2%. Though the 

effort made in [23] tried to address the class imbalance problem using SMOTE based sub-

sampling followed by RF and AdaBoost based classification; however, AdaBoost was 

found inferior to RF-based binary classification.  

 Similarly, in [24], SMOTE was applied with k-NN to perform outlier detection in 

the NSL-KDD dataset. k-NN with 10-fold cross-validation exhibited satisfactorily. Authors 

[25] found that SMOTE with RF performs better than the Naïve Bayes classifier for 

intrusion detection. Authors [26] applied DT and SVM algorithms to perform anomaly 

detection. Authors found that DT outperforms SVM (99.62%) in a higher true positive rate 

(99.86%). In [27], the authors applied the Xgboost algorithm to perform intrusion detection 

in the NSL-KDD dataset. Authors found that Xgboost outperforms SVM, NB, and RF-based 

IDSs. The authors [28]  and [29] used deep learning based NIDS model which are more 

resource consuming and complex network intrusion detection system.  

III. SYSTEM MODEL  

The overall proposed model encompasses the following steps. 

Step-1 Data Collection and Modelling  

Step-2 Data Pre-processing and Normalization 

Step-3 Sub-sampling and Consolidation  

Step-4 Feature Selection  

Step-5 Classification and anomaly detection.  

The overall implementation schematic of the proposed NIDS model is given in Fig. 1-1. 

A detailed discussion of the above-stated methods is given in the subsequent sections. 
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A. Data Collection and Modelling  

  In this research, we considered three different datasets, including NSL-KDD, 

KDD99, and UNSW-NB15. The snippet of the data under study is given as follows: 
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1) KDDCup99. KDDCup99 dataset, which is often called the KDD99 data [30], 

DARPA intrusion detection challenge dataset. This data is available in four key 

formats, in a full dataset volume and 10% data volume. It has a total of 41 features 

with five distinct attack classes, Normal, DoS, Probe, R2L, and U2R. Typically, 

these features are classified into varied groups, such as basic features, content 

features, and time-based features.  

2) NSL-KDD Network Flow Data.  It is a distilled version of the KDD99 intrusion 

dataset. This specific network intrusion data was created in 2009, and its prime 

motive was to solve the issues pertaining to non-linear traffic or irregular data 

patterns in the previous KDD99 dataset.  To model NSL-KDD data [31] , the filters 

are applied to eliminate redundant connection and traffic records in the KDD99 

dataset. It possesses a total connection record of 1,36,489. Four sub-datasets are 

comprised of KDDTest+, KDDTest-21, KDDTrain+, KDDTrain+_20Percent. The 

portion of NSL-KDD data sets: KDDTest-21 and KDDTrain+_20%, are subsets of 

the KDDTrain+ and KDDTest+, respectively. 

Fig.1.1. Proposed heterogeneous ensemble-assisted NIDS model. 
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3) UNSW-NB15. UNSW-NB15 dataset [32] was created by the cybersecurity research 

team of the Australian Centre for Cyber Security (ACCS), which was specifically 

created to solve the KDD99 and NSL-KDD dataset’s prime issues discussed above. 

The total data encompassed almost 2 million connection record, However, it is also 

available in a partial dataset, with 82,332 train connection records along with 175 

341 test connection records comprising 10 attacks patterns. The data used in this 

research comprises a total of 42 features, where a total of nine attacks patterns were 

used for assessment.   

B. Data Pre-processing and Normalization   

 The input datasets were at first converted into Attribute-Relation File Format (*.arff)  

for WEKA. Data heterogeneity, imbalanced data nature, skewness, and high data-values 

variations can force machine learning algorithms to undergo a convergence problem. 

C. Data Sub-Sampling and Consolidation   

 The data sub-sampling and consolidation consists of three different types of 

sampling methods, up-sampling, down-sampling, and SMOTE. In up-sampling, the 

arbitrary duplication of the observations or patterns from the minority classes reinforces its 

signal or value. On the other hand, down-sampling was performed so that it removes 

observations randomly from the majority class to avoid its presence from dominating the 

learning model, in addition to the up-sampling and down-sampling of the synthetic minority 

over-sampling technique, often called SMOTE. The SMOTE is an oversampling where 

synthetic samples are produced for the minority class. The SMOTE, up-sampling and down-

sampling process helps to overcome the overfitting problem by random generating new 
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instances into the NIDS dataset. Once the three sets of sub-sampled datasets are obtained, 

all three are consolidated to form a final input dataset for further feature selection and 

classification.  

D. Feature Reduction (Feature Selection) 

 Feature selection is selecting a sub-sample of the most relevant features from the 

given NIDS datasets. Several methods are available to reduce the features. Chi-square test, 

principal component analysis, rank sum test and more are used on NIDS to reduce the 

dimensional of NIDS. Rank sum tests a non-parametric test with independent samples, 

assesses the correlation amongst the different variables and their distinct impact on 

classification accuracy. Thus, once selecting the set of significant features, it has been given 

as input to the proposed heterogeneous ensemble learning model for further training and 

classification.  

E. Heterogeneous Ensemble Learning Model Design   

 Unlike classical standalone classifier-based anomalies detection or NIDS solutions, 

in this paper, we have designed a robust heterogeneous ensemble learning model with state-

of-art high-performing machine learning algorithms such as Naïve Bayes, J48, k-NN, and 

RF. Noticeably, the above-stated machine learning algorithm's selection was based on their 

respective performances towards anomalies detection or allied IDS or NIDS solutions. Since 

the considered algorithms belong to the different paradigms such as J48 is an association 

mining model, while k-NN is a clustering concept, while RF is an ensemble model, the 

consideration of these all algorithms altogether constitute a heterogeneous ensemble 

learning environment, where each classifier acts as a base classifier to achieve a common 

consensus towards anomalies detection or NIDS solution.   
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F. Maximum Voting Ensemble (MVE) Model 

 To form an ensemble structure, all classifiers are executed over the same dataset and 

predict each connection traffic as an anomaly (label as "1") or normal traffic (label as "0"). 

Thus, obtaining each-connection outputs (i.e., label) of each node-edge values and 

corresponding label "Maximum Voting Ensemble (MVE) was executed that obtained the 

consensus for each connection traffic. Traffic or connection with higher 1's was identified 

as anomalies, while the traffic connection with higher 0s were classified as normal traffic. 

In MVE, each base machine learning classifier makes a prediction and votes for each 

sample. The sample class which has the highest votes is the final prediction for the output 

class. Thus, the proposed consensus-based model performed the identification of each 

connection as anomaly or normal traffic. Being a consensus-based approach, the reliability 

of the proposed heterogeneous ensemble model can be superior to the classical standalone 

classifier-based results.

IV. RESULTS AND DISCUSSIONS 

 To assess the performance of the proposed NIDS model (Fig.1-1.), the overall 

algorithms were developed using the WEKA tool, where it was simulated on the central 

processing unit (CPU) encompassing 64-bit Windows 10 machine with 16G RAM and i7-

1.99GHz processor. To cross-examine the performance of both base-classifiers as well as 

the proposed heterogeneous ensemble model, we obtained aforesaid performance 

parameters over the different datasets. The performance assessment involves assessing true 

positive rate, false-positive rate, area under receiver operating characteristics (AUC).   
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A. Experiment-1 KDD'99 Datasets 

  In this section, the proposed NIDS model was simulated with the KDD'99 dataset, 

whose specifications are given in the previous sections. To assess whether the proposed 

heterogeneous ensemble model exhibits superior over the existing base-classifiers 

(standalone classifier), we obtained performance outputs by each base classifier as well the 

proposed Heterogeneous ensemble-based NIDS model. Moreover, realizing the fact that the 

majority of existing NIDS models merely apply binary classification, though the data used 

encompassed multiple attack types, signifying the possibility towards multi-class 

classification. Considering this fact, we performed both binary classification and multi-class 

classification, whose simulated results are given in Table 1.1 and Table 1.2, respectively. 

Trained and tested using varied machine learning models as base classifiers as well as 

proposed heterogeneous ensemble learning-based anomaly classifier.  

TABLE 1. 1  
PERFORMANCE ON KDD’99 FOR BINARY CLASS CLASSIFICATION 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

TABLE 1. 2  
PERFORMANCE ON KDD'99 FOR MULTI-CLASS CLASSIFICATION 

 

Classifiers TPR FPR AUC 
J48 0.961 0.011 0.999 
k-NN 0.938 0.011 0.947 
Naïve Bayes 0.917 0.028 0.981 
SVM 0.923 0.019 0.992 
Random Forest 0.936 0.016 0.999 
Bagging  1 0 1 
AdaBoost 1 0 1 
*Proposed Heterogeneous Ensemble  1 0 1 

Classifiers TPR FPR AUC 
J48 0.941 0.015 0.998 
k-NN 0.925 0.140 0.910 
Naïve Bayes  0.915 0.035 0.98 
SVM 0.916 0.015 0.99 
Random Forest 0.931 0.02 0.996 
Bagging  0.961 0.111 0.998 
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  Observing results in Table 1.1, it can easily be found that unlike state-of-art 

standalone machine learning algorithms, our proposed Heterogeneous ensemble model 

exhibits near 100 % TPR , which is more than any other base classifier. Though, AdaBoost 

ensemble model too has performed relatively satisfactorily in terms of precision; however, 

being consensus-based approach, the proposed model seems more justifiable and 

convincing. Among  all base classifiers, Naïve Bayes algorithm was found low-performing, 

in terms of TPR (91.5%)  performance. Observing overall performance towards Binary 

decision in NIDS, the performance by our proposed Heterogeneous ensemble-based model 

seems more convincing and generalizable.  

  Considering multi-class classification ability by proposed model, the simulated 

results (see Table 1.2) reveals that similar to the binary class classification performance, the 

proposed Heterogeneous ensemble-based NIDS model achieves the highest TPR of 

98.8%,. Moreover, false positive performance by the proposed model too was found 

significantly small, making the proposed Heterogeneous ensemble-based NIDS solution 

more reliable towards real-world intrusion detection purposes. 

B. Experiment-2 NSL-KDD Datasets 

  The NSL-KDD is an improvised dataset with more non-linear connection patterns 

and sophisticated attacks conditions, making NIDS training more suitable for realistic 

anomaly identification. In this experiment, the machine learning algorithms were executing 

over the NSL-KDD dataset containing 42 features. Similar to the previous experiment 

AdaBoost 0.965 0.11 0.999 
*Proposed Heterogeneous Ensemble  0.988 0.007 0.997 
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(Experiment-1), with same initial processing setups, different machine learning models 

were executed as standalone classifier, while the proposed Heterogeneous ensemble model 

embodies each connection-pattern classification and allied voting information to estimate 

consensus for final classification. The confusion metrics outcomes for both binary 

classification and multi-class attack classification are given in Table 1.3 and 1.4, 

respectively.  

TABLE 1. 3  
PERFORMANCE ON NSL-KDD FOR BINARY CLASSIFICATION 

 
 
 

 

 

 

 

 

 

Considering binary class classification that is, intrusion or malicious traffic 

detection, the proposed Heterogeneous ensemble-based NIDS model achieves the highest 

TPR of 94.5% and lower FPR of 0.012. Multi-class classification efficacy by the proposed 

Heterogeneous ensemble model, one can easily observe that unlike other state-of-art 

methods, our proposed Heterogeneous ensemble model exhibits superior in terms of highest 

TPR (92.5%), lowest FPR (0.016) (see Table 1.4).The overall result confirms the robustness 

of the proposed Heterogeneous ensemble-based NIDS system for real-world anomalies 

detection. 

 

Classifiers TPR FPR AUC 
J48 0.815 0.146 0.841 
k-NN 0.809 0.140 0.926 
Naïve Bayes  0.761 0.198 0.908 
SVM 0.851 0.098 0.969 
Random Forest 0.805 0.155 0.959 
Bagging  0.826 0.153 0.928 
AdaBoost 0.784 0.174 0.903 
*Proposed Heterogeneous Ensemble  0.945 0.012 0.963 
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TABLE 1. 4  
PERFORMANCE ON NSL-KDD  FOR MULTI-CLASS CLASSIFICATION 

 
 
 

 
 
 
 
 
 
 
 
 

C. Experiment-3 UNSW-NB15 Dataset 

 In this experiment, the UNSW-NB15 dataset was taken into consideration for the 

NIDS process. The results obtained towards the binary classification, that is, Normal traffic 

or anomalies connection, the proposed ensemble learning-based concept was found superior 

over other state-of-art methods. The proposed Heterogeneous ensemble-based NIDS model 

exhibited the highest TPR of 100%, which is more than all base classifiers individually. 

Additionally, the FPR (0%) by the proposed model was lower than the standalone classifier. 

In the same way, the false-positive rate was found to be lower than the other methods for 

both binary classification (see Table 1.5) as well as multi-class classification (see Table 1.6). 

For multi-class classification as well, the proposed NIDS model with heterogeneous 

ensemble learning ability exhibited the highest TPR of 0.931, with 0.006 FPR signifying 

reliability towards the NIDS solution.  

TABLE 1. 5  
PERFORMANCE ON UNSW-NB15 FOR BINARY CLASSIFICATION 

 

Classifiers TPR FPR AUC 
J48 0.781 0.154 0.840 
k-NN 0.799 0.143 0.912 
Naïve Bayes  0.755 0.199 0.905 
SVM 0.823 0.112 0.950 
Random Forest 0.795 0.165 0.949 
Bagging  0.806 0.173 0.918 
AdaBoost 0.754 0.184 0.901 
*Proposed Heterogeneous Ensemble  0.925 0.016 0.943 

Classifiers TPR FPR AUC 
J48 1 0 1 
k-NN 1 0 1 
Naïve Bayes  0.911 0.021 0.968 
SVM 0.882 0.073 0.905 
Random Forest 0.996 0.003 1 
Bagging  1 0 1 
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TABLE 1. 6  
PERFORMANCE ON UNSW-NB15 FOR MULTI-CLASS CLASSIFICATION 

 
 

 

 

 

 

 

 

 

Observing overall results, it can easily be found that the proposed NIDS model using 

ensemble learning ability exhibits superior, which could be contributed due to high-accurate 

base classifiers consensus or voting. Undeniably, being an MVE consensus-based approach, 

the proposed NIDS model's reliability or accuracy is higher and more generalizable as a 

real-world solution. Though it requires exploiting the consensus by each base-classifier it 

takes relatively higher training time; however, parallel execution of the different base-

classifiers makes the proposed system more time-efficient. Therefore, it provides optimally 

reliable and accurate performance, even at the cost of computational time addition. It makes 

the proposed system suitable for real-world NIDS solution.  

V. CONCLUSION  

  Though a number of existing literatures apply machine learning method(s) for 

anomalies detection or classification; however, their respective generalization over different 

datasets remains questionable. Different classifiers show different performances or results 

over the same dataset. It raises the question of their acceptability as a universal NIDS 

solution. Unlike classical methods, the use of multiple network traffic data such as NSL-

AdaBoost 1 0 1 
*Proposed Heterogeneous Ensemble  1 0 1 

Classifiers TPR FPR AUC 
J48 0.864 0.017 0.947 
k-NN 0.744 0.018 0.893 
Naïve Bayes  0.623 0.035 0.956 
SVM 0.810 0.233 0.788 
Random Forest 0.849 0.031 0.966 
Bagging  0.874 0.019 0.961 
AdaBoost 0.85 0.02 0.979 
*Proposed Heterogeneous Ensemble  0.931 0.006 0.945 
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KDD, KDD99 and UNSW-NB15 strengthened the proposed data-driven NIDS model to 

detect both known as well as unknown traffic patterns. Subsequently, the proposed model 

applied rank-based features and thus achieves higher computational efficacy with better 

training and knowledge generation. Thus, employing a maximum voting ensemble or 

consensus-based approach, the proposed Heterogeneous ensemble model predicts each 

pattern or node as anomalies or normal, hence increasing the accuracy of the proposed 

model. Moreover, it performed multi-class classification as well, with higher true-positive 

rate, higher AUC and high-accuracy. Noticeably, the proposed ensemble learning model 

achieved better performance than the comprising base-classifiers (as standalone classifier). 

The higher detection rate, with the higher true positive rate , low false positive rate and AUC 

confirms suitability of the proposed model towards real-world NIDS applications.
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CHAPTER 2. EFFICACY OF MACHINE LEARNING-BASED CLASSIFIERS 

FOR BINARY AND MULTI-CLASS NETWORK INTRUSION DETECTION 

Abstract—The internet-based services undoubtedly led the worldwide revolution 

with exponential growth, but security breaches resulted in personal digital asset losses, 

which need a comprehensive cybersecurity solution. Traditionally, signature-based 

network intrusion detection is employed to capture attributes of normal and abnormal 

traffic in a network, but it fails to detect the zero-day attack. The machine learning-based 

approach is attractive among various known NIDS methods to circumvent the shortcoming 

because the machine learning-based approach can efficiently analyze the big network 

traffic data and efficiently detect the zero-day attack. The imbalanced NIDS dataset does 

not provide better performance on practical implementation scenarios. Reducing the 

number of target classes into a new target class creates a balanced NIDS and improves 

classifier performance. In this paper, we present the efficacy of several machine learning 

algorithms, including Random Forest (RF), J48, Naïve Bayes, Bayesian Network, Bagging, 

AdaBoost, and Support Vector Machine (SVM) using network logs traffic (KDD99, 

UNSW-NB15, and CIC-IDS2017) using WEKA. This paper examined the impact of 

changing the number of output classes of the publicly available network intrusion datasets 

on sensitivity (True Positive Rate), False Positive Rate (FPR), Area under the ROC curve 

(AUC), and incorrectly identified percentage. Interestingly, the efficiency of these 

classifiers has increased, adding strongly correlated features to the target classes. The 

experiment results reveal that the machine learning classifiers' performance improved 



30 
 

 
 

when the number of target classes decreased. The addition of a highly correlated feature to 

the output class increases the performance of the classifiers. 

Keywords—CIC-IDS2017, imbalanced dataset, KDD99, machine learning, 

network intrusion detection system, UNSW-NB15. 

I. INTRODUCTION  

  An increase on the Internet and technology usage has increased cyberattack risk: 

losing data, personal information, and more. Cyber attackers can use different attacks to 

compromise the CIA (Confidentiality, Integrity, and Availability) triad. An Intrusion 

detection system (IDS) is used to inspect networks and host activity to identify suspicious 

traffic. A system to detect attacks related to the host is called host IDS; likewise, the network 

intrusion detection system (NIDS) detects the network devices' attacks. The host devices 

are the data sources for the host-based IDS. Security information and event management 

(SIEM) is used to analyze the traffic for the host-based intrusion. Network-based IDS, 

network devices such as routers, switches, and host terminals switch are used to collect the 

traffic data to analyze the networks' malicious activities. Most intrusion detection systems 

consist of network sensors, central monitoring systems, report analysis, database and storage 

components, and response boxes. The IDS can be a hardware or software device used to 

detect malicious activities inside the host and computer networks. There are two categories 

of intrusion detection methods: signature-based intrusion detection systems (SIDS) and 

anomaly-based intrusion detection systems (AIDS) [1]. 

 SIDS is a traditional method where malicious activities are detected based on pattern 

matching with external attacks, including knowledge-based detection and misuse detection. 

The SIDS matches the current signature with the signature database's previous signature and 
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checks for suspicious activities. The main drawback of the SIDS is that it fails to detect 

zero-day attacks as those new types of attack signatures are not included in the SIDS 

signature database. The commonly used IDS are Snort and NetSTAT. AIDS overcomes the 

SIDS's drawbacks by modeling normal behaviors using machine learning, statistical-based, 

or knowledge-based methods [1]. Anomaly-based detection can also produce false results 

caused by changes in user habits. 

 The fuzzy C-means clustering techniques combined with principal component 

analysis and the genetic algorithm used to optimize the provided network-based IDS 

produced poor accuracy on R2L (90.2%) and U2L (23.8%) for KDD99 [33]. 

Simultaneously, the performance using genetic search dimensionality reduction on KDD99 

showed that probing, U2R, and R2L yield a true positive rate of 72.4%, 9.3%, and 2.6%, 

respectively [34]. While [35] used a fuzzy genetic search algorithm and received 97.97% 

maximum performance, even they used feature reduction on the KDD99 dataset. For the 

decision tree, U2R showed a poor performance of 88.33% on KDD99 using a flexible neural 

tree and particle swarm optimization method with different feature subsets [36]. The number 

of features and feature subsets obtained by dimensionality reduction and feature reduction 

does not improve classification accuracy.  

 The detection rate using a genetic search algorithm to select the features subset on 

KDD99 with Synthetic Minority Oversampling Technique (SMOTE) using random forest 

classifier, the U2R was high of 82.7%. The SMOTE method was used on NSL-KDD and 

UNSW-NB15 datasets to remove the skewness [37]. Other authors also tried to improve the 

classification accuracy for the KDD99 dataset using double-layer detection and stacking 

ensemble classifiers [38] and the cluster-based under-sampling method [39]. The ensemble 
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method improves normal traffic performance while it shows poor performance on rare 

attacks. Similarly, the SMOTE techniques generate redundant instances for minor classes. 

They are under-sampled for the major class traffic, which is not perfect for the NIDS to 

produce an accurate result on the real network traffic and attacks.  

 Deep learning methods for NSL-KDD and UNSW-NB15 datasets found the 

detection rate on U2R and R2L with the precision of 85.58% probe and 59.52% U2R attacks 

on NSL-KDD with overall accuracy on UNSW-NB15 is 86.5% [40]. An in-depth learning 

approach was combined with a sparse autoencoder and SVM for NSL-KDD and CICIDS 

2017 to improve the performance [18]. The ANN used on the UNSW-NB15 on the NIDS 

dataset showed the highest precision recorded, with 88% for binary classification [41]. The 

autoencoder and deep learning on UNSW-NB15 provided the highest accuracy of 98% [42], 

and CICIDS2017 [43] TPR of 99.8%. Unfortunately, the deep learning system requires a 

large dataset and demands higher computing power and expensive GPUs, which increases 

the end-user cost. 

 Hence, we proposed a simple, efficient method where we regroup the rare attacks 

into new classes to reduce the number of target classes and increase the number of instances 

in the target class without interpolating the traffic of the imbalance NIDS datasets (KDD99, 

NSL-KDD, UNSW-NB15, CICIDS2017) to provide a better intrusion detection rate in a 

real scenario NIDS. The different classifiers such as Naïve Bayes, Bayesian Network, 

Random Forest, J48, AdaBoost, and Bagging are tested to perform binary and multiclass 

classification. 
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 The main contributions of this research work are: 

1) Reducing the number of classes increases the performance of machine learning 

classifiers. 

2) Deriving highly correlated features with the output class improves the machine 

learning model's performance on intrusion datasets.  

3) Benchmarking different machine learning algorithms on different intrusion datasets 

also provides a similar insight into our approach's efficacy. 

The remainder of the paper is as follows. Section II describes the methodology of our 

proposed NIDS approach. Section III illustrates the results and discussion, while Section IV 

concludes this research work. 

II. METHODOLOGY  

 Machine learning-based NIDS performance is affected by the size of the training 

and testing dataset, number of target classes, nature of the dataset, number of features, and 

machine learning algorithms used. The network traffic is collected, examined, and 

processed using a network analyzer inside the network to create the NIDS dataset. The 

preprocessed data is used to train and test the selected algorithms. Performance metrics are 

recorded to compare and analysis the model.   

A. Data Description  

 This research uses publicly available NIDS datasets (*.CSV), the KDD99, UNSW-

NB15, and CICIDS2017. A brief description of these datasets is as follows. 
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1) KDDCup99:  The KDDCup99 dataset, also referred to as KDD99 data [30], was 

developed by executing the 1998 DARPA intrusion detection challenge dataset by 

processing TCP dump data. This data is available in full dataset volume and 10% 

data volume. It has 41 features with five distinct attack classes: Normal, DoS, 

Probe, R2L, and U2R (see Table 2.1).   

TABLE 2. 1  
TRAINING AND TESTING DATA ON KDD [6] 

 
Attack Categories Train Test 
Normal 812,814 60,593 
DoS 247,267 229,853 
Probe 13,860 4,166 
R2L 999 16,189 
U2R 52 228 
Total 1,074,992 311,029 

 

2) UNSW-NB15: The Australian Centre for Cyber Security (ACCS) cybersecurity 

research team created the UNSW-NB15 dataset [32] to solve issues with the 

KDD99 dataset. The data used in this research comprises 42 features. The 

distribution of the data used in this research work is as per Table 2.2  

TABLE 2. 2  
UNSW-NB15 DATASET [6] 

 
Class Training Testing 
Normal 56,000 37,000 
Fuzzers 18,184 6,062 
Analysis 2,000 677 
Backdoors 1,746 583 
DoS 12,264 4,089 
Exploits 33,393 11,132 
Generic  40,000 18,871 
Recon  10,491 3,496 
Shellcode 1,133 378 
Worms 130 44 
Total 175,341 82,332 
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3) CICIDS2017:  The University of New Brunswick's Canadian Institute for 

Cybersecurity released the CICIDS2017 [44] dataset according to the framework 

defined in [45] to solve previous dataset’s shortcomings. Raw data in the form of 

PCAP files are provided together with 79 features in CSV files. Network traffic was 

recorded over 5 days from 9 a.m. Monday, July 2017, to 5 p.m. on Friday, July 2017, 

resulting in a total of 2,830,743 instances. The Wednesday working hours and 

Thursday morning web attacks network traffic used during this research work are as 

seen in Table 2.3. 

TABLE 2. 3  
CICIDS2017 WEDNESDAY AND THURSDAY M. TRAFFIC [16] 

 
Wednesday Traffic Thursday Morning Traffic 
DoS GoldenEye 10,293 WA_brute_force 1,507 
DoS Hulk 231,073 WA_Sql_injection 21 
DoS Slowhttptest 5,499 WA_XSS 652 
DoS Slowloris 5,796   
Heartbleed 11   
Benign 44,0031  Benign 168,186 

 

B. Data preprocessing 

 We converted the dataset into Attribute-Relation File Format (*. arff) from *.CSV 

file format for WEKA compatibility. The data preprocessing includes feature selection, 

normalization, handling missing values, null values, and redundant instances in the NIDS 

datasets. The proposed method reduces the number of classes by regrouping the additional 

intrusion traffic into different classes. The grouping of different target classes makes the 

NIDS dataset more balanced.  The detailed feature processing for each dataset is as follows: 
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1) KDDCup99 preprocessing:  Here, we created a binary class dataset from a 

multiclass by grouping all attacks into a single class and remaining grouped into a 

normal class. The resultant dataset becomes a binary class with a 'normal' and 

'attack' class.  

2) UNSW-NB15 Preprocessing for Multiclass Experiment:  The multiclass (10) 

UNSW-NB15 dataset is converted into binary class NIDS by grouping all the attack 

classes (see Table 2.2 for attack list) into a single class and the rest are in normal 

classes for the binary data set experiment.  Again, we converted the UNSW-NB15 

multiclass with 10 output classes dataset into UNSW-15 multiclass with 6 output 

classes by combining attack types of worms, shellcode, backdoor, analysis, and 

recon attacks grouped into a new attack class, keeping other classes unchanged. The 

grouping of the attack classes with a low number of instances into new single classes 

reduces NIDS skewness. It improves the detection rate because this contributes to 

the dataset becoming a more balanced form. 
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3) CIC-IDS2017 Preprocessing for Multiclass experiment:  Conversion of multiclass 

(6) to binary class is done by grouping all attack types into a single target class. We 

create the multiclass (4) NIDS dataset for Wednesday traffic (see Table 2.3 for attack 

list) by grouping Heartbleed, DoS Slowloris, and Dos Slowhttptest into a single 

attack class. Since the given dataset is an imbalanced one, regrouping the different 

attacks into a new class improves imbalance NIDS performance. Also, we regroup 

WA_sql_injection and WA_XSS into a single class to form the multiclass (3) 

CICIDS2017 NIDS to perform the experiment and compare the result between 

different multiclass experiments. The regrouping is based on the lower number of 

attacks into a new attack class.  
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4) UNSW-NB15 Preprocessing for Feature Engineering:  The UNSW-NB15 dataset 

contains 45 features. Among them, #44 (attack_cat) and #45 (label) are important 

features to compare classifiers' performance. The "attack_cat" features represent the 

nine types of attacks included in the UNSW-NB15 dataset. These nine attacks are 

labeled as "abnormal" and good traffic as "normal" using the UNSW_NB15 dataset 

attacks table. The label (feature #45) contains two values, "abnormal" and "normal," 

created based on feature #44 (attack_cat). For binary class, feature number #45 

(label) was assigned as the output class, providing the "normal" and "abnormal" as 

the output class. Similarly, for multiclass UNSW-NB15, feature number #44 

(attack_cat) was assigned as the output class, providing 10 different classes: Normal, 

Reconnaissance, Shellcode, Exploit, Fuzzers, Worm, DoS, Backdoor, Analysis, and 

Generic. Similarly, for the binary class UNSW-NB15 dataset, feature number #45 

(label) was assigned as an output class, and features number #1 (id) and feature 

number #44 (attack_cat) were from the dataset. As a result, the training and testing 

dataset became the binary class with 43 features. For multiclass, feature number #44 

(attack_cat) was assigned as an output class, and we removed feature number #1 (id) 

and feature number #44 (label) from the UNSW-NB15 dataset. Then, the resulting 

dataset became a multiclass dataset with 43 features. 

C. Data splitting  

  The train test split ratio is not defined in the literature. The researchers [46] adopt 

60% of training and 40% of test data for building the machine learning model. We used the 

same ratio for this research by creating separate files for training and test data.  
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D. Machine Learning Algorithms 

  The selection of a machine learning model is performed from different categories. 

The Naïve Bayes (NB) and Bayesian Networks are chosen as the probabilistic model and 

are dominantly used in the previous NIDS research. The J48 and RF are decision tree-based 

classifiers. The decision tree-based machine learning classifiers used a large number of trees 

to make the decision and produce the final result. Hence, the tree-based machine model was 

also used to perform the experiments. Along with this, we used ensemble classifiers to 

measure the NIDS classification performance using Bagging and AdaBoost algorithm. We 

used the ensemble classifiers because these classifiers are robust for the imbalance NIDS 

dataset. The selection of all different machine learning classifiers itself provides a detailed 

study of which categories classifiers provide high classification performance.  

 The hyperparameters and other experimental configurations on the WEKA are the 

batch size used for all the machine algorithms is 100. For the J48 classifier, we choose the 

confidential factor 0.25 for subtree raising pruning and choose onefold of the dataset for 

pruning and 2-fold of the dataset for growing the tree. There is the minimum number of 

instances per leaf, i.e., 2. The algorithm used minimum description length (MDL) correction 

to split numeric attributes. The RF classifier uses single execution slots (threads) to 

construct the ensemble, and the single bag consists of all the training data. The maximum 

depth of the tree used is 0, which refers to the unlimited. For BaysianNet, for finding the 

conditional probability tables, the simple estimator α equal to 0.5. It uses search algorithms 

where the order of the variables restricts hill-climbing algorithms. The Bayes score type is 

used to judge the quality of the network.  The initial network used for structure learning is 

the Naïve Bayes network. For Adaboost, we randomly select the base classifiers, which are 
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decision stump, decision tree, and random forest, for 10 iterations. The weight threshold for 

weight pruning is 100. For bagging, Single slots (thread) are used for constructing the 

ensemble. All the training dataset is performed as a single bag. For the fast decision tree 

learner (as a base classifier), we use the minimum total weight of the instance in a leaf as 2, 

where pruning does not apply and uses any maximum tree depth. The minimum proportion 

of the variance on all the data present at a node for splitting in a regression tree is 0.001, and 

the initial class counts 0.0 for a 3-fold. 

E. Model Evaluation 

  The performance metrics are recorded and compared between binary and multiclass 

NIDS datasets in terms of true positive rate (TPR), false-positive rate (FPR), incorrectly 

classified percentage, and area under the ROC (AUC).  TPR is also called detection rate or 

sensitivity which is the ratio of correctly predicted instances and total number of instances. 

The FPR is the ratio between the number of normal instances that are classified incorrectly 

as attacks and the total number of normal traffic instances. The incorrectly classified 

percentage is obvious to define, which provides the how much percentage of total data that 

is incorrectly classified. The AUC is the Area under the ROC, which provides the relation 

between TPR versus FPR for the given classifiers. The highest value of TPR, lowest value 

of FPR, and highest values of the AUC rated the machine learning models during the 

performance evaluation. 
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The proposed NIDS model's overall implementation is as per the following pseudocode. 

Pseudocode for Proposed NIDS for WEKA 
1 FOR ∀𝑢𝑢;      𝑢𝑢 = [𝐾𝐾𝐾𝐾𝐾𝐾99,𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 −𝑈𝑈𝑁𝑁15,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐾𝐾𝑈𝑈2017] 
2  Regroup target classes (see Data Preprocessing Section B) 
3  Build a sampling dataset of features. 
4  Split training and testing dataset a 60:40 ratio 
5  FOR ∀𝑣𝑣 ;   𝑣𝑣 = [𝑈𝑈𝑁𝑁, 𝐽𝐽48,𝑅𝑅𝑅𝑅,𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑈𝑈𝐵𝐵𝐵𝐵,𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵] 
6   Build model  𝑚𝑚𝑢𝑢𝑢𝑢 using WEKA; m= model id. 
7   Calculate performance metrics. 
8  END 
9 Compare the performance metrics. ∀𝑚𝑚 
10 END 
11 Terminate 

 
 

III. RESULT AND DISCUSSION 

  The experiments were simulated using WEKA installed on the central processing 

unit encompassing a 64-bit Windows 10 machine with 16G RAM and an i7-1.99GHz 

processor. The performance of the models was compared using various performance metrics 

including, total program run time, detection ratio, and precision. The higher TPR represents 

the model is performing well. 

A. Experiment-1 KDD'99 Datasets 

 The binary and multiclass performance results are shown in Table 2.4 and Table 2.5, 

respectively.   The high value of the binary class NIDS shows that the given machine 

learning models show higher classification performance. 

TABLE 2. 4  
PERFORMANCE ON KDD'99 FOR BINARY CLASSIFICATION 

 
 

 

Classifiers TPR FPR AUC Incorrectly Classified (%) 
NB 0.917 0.028 0.981 8.24 
J48 0.961 0.011 0.999 3.914 
RF 0.936 0.016 0.999 6.444 
BayesinNet 0.923 0.015 0.995 7.74 
Bagging 1 0 1 0 
Adaboost 1 0 1 0 



42 
 

 
 

TABLE 2. 5  
PERFORMANCE ON KDD'99 FOR MULTICLASS CLASSIFICATION 

 
 
 

 
 
 
 

 
   

By observing the results in Table 2.4 for the KDD99 dataset, it is found that the TPR 

for binary class NIDS is higher than the multiclass NIDS. Comparing those results in Table 

2.4 and 2.5, the binary class performance is higher than the multiclass performance, which 

is due to the regrouping of the classes and removing the skewness in the dataset. The 

performance result shows that Bagging and Adaboost algorithms have better performance 

than the other machine learning models because ensemble models are combined with 

multiple models, which are robust.  

B. Experiment-2 UNSW-NB15 Dataset 

  The performance metrics for both binary classifications and multiclass attack 

classifications are given in Table 2.6. The Bagging and AdaBoost ensemble classifiers 

shown in Table 2.6 have 100% TPR for the binary class NIDS. The TPR for all classifiers 

is low for multiclass (10) as compared to multiclass (6). The ensemble learning-based 

concept was found superior over other state-of-the-art methods for binary classification 

based on higher TPR. This clearly shows that the classifier's TPR values are improved when 

the number of classes is reduced. The overall comparison in Table 2.6 shows that the 

performance for every machine learning algorithm increases with a decrease in the number 

of class sizes. 

Classifiers TPR FPR AUC Incorrectly Classified (%) 
NB 0.915 0.035 0.98 8.347 
J48 0.941 0.015 0.998 5.35 
RF 0.931 0.02 0.996 6.871 
BayesinNet 0.916 0.019 0.99 8.436 
Bagging 0.961 0.111 0.998 3.914 
Adaboost 0.965 0.11 0.999 3.945 
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C. Experiment-3 CICIDS2017  Dataset 

  Moreover, the bagging and AdaBoost ensemble model exhibit 100% of TPR on 

binary KDD'99 NIDS. The experimental results reveal that the binary class classification 

performances with the highest accuracy of 100%. Table 2.7 and Table 2.8 experimental 

result shows that the performance of binary class  CIC-IDS2017 Wednesday and  Thursday 

NIDS obtained 100% TPR for decision tree-based classifiers and ensemble classifiers. As 

in KDD'99 and UNSW-NB15 NIDS, classifiers' performance increased when the number 

of target classes decreased on CIC-IDS2017 NIDS. 

D. Experiment-4 UNSW-NB Dataset (feature engineering) 

 This experiment-4 is implemented on UNSW-NB15 multiclass and binary class 

NIDS. Interestingly, It is found that the attributes play an important role in improving the 

performance of UNSW-NB15 NIDS. The last two attributes are used to determine whether 

the NIDS is binary or multiclass: one contains the multiclass target and the other binary 

class target value. Preserving the features that are used for NIDS to create the target binary 

or multiclass increased the performance of the machine learning models.  The details about 

the name of the features are explained in the dataset information and data preprocessing 

section for UNSW-NB15 dataset. The literature reflected that the researchers used either 

one feature during the classification of UNSW-NB15 network traffic.  

 Those features are highly correlated with each other because the binary target classes 

are derived directly based on the number of attacks grouped into single classes and keeping 

the good traffic in the normal class.  Similarly, the multiclass target classes are directly 

related to the type of attack classes that reside in the NIDS dataset. The conversion from 
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multiclass to binary made the simple, but preserving those features in the NIDS dataset 

increased the performance of the machine learning classifiers.  

TABLE 2. 6.  
PERFORMANCE OUTPUTS WITH UNSW-NB15 DATASET BINARY AND 

MULTICLASS CLASSIFICATION 
 

Performance of Binary Class UNSW-
NB15 

Multiclass Class-6 UNSW-
NB15 Multi Class-10 UNSW-NB15 

Classifie
rs 

TP
R 

FP
R 

AU
C 

Incorrec
tly 
Classifi
ed (%) 

TP
R 

FP
R 

AU
C 

Incorrec
tly 
Classifi
ed (%) 

TP
R 

FP
R 

AU
C 

Incorrec
tly 
Classifi
ed (%) 

NB 0.9
11 

0.0
21 

0.9
68 8.8593 0.6

84 
0.0
29 

0.9
6 31.6 0.6

23 
0.0
35 

0.9
56 37.7119 

J48 1 0 1 0 0.9
03 

0.0
14 

0.9
76 9.726 0.8

64 
0.0
17 

0.9
47 13.578 

RF 0.9
96 

0.0
03 1 0.3887 0.9 0.0

16 
0.9
85 9.9826 0.8

49 
0.0
31 

0.9
66 15.0743 

Bayesin
Net 

0.9
13 

0.0
98 

0.9
69 8.7014 0.6

88 
0.1
28 

0.9
61 31.16 0.6

24 
0.2
5 

0.9
57 37.6399 

Bagging 1 0 1 0 0.9
03 

0.0
13 

0.9
87 9.6565 0.8

74 
0.0
19 

0.9
61 12.5808 

Adaboos
t 1 0 1 0 0.8

96 
0.0
11 

0.9
81 10.4017 0.8

5 
0.0
2 

0.9
79 15.0221 

 
 

TABLE 2. 7  
PERFORMANCE ON CICIDS2017 BINARY AND MULTICLASS CLASSIFICATION 

FOR THURSDAY DATA 
 

Multiclass-4 CIC-IDS2017_Thursday Multiclass-3 IC-
IDS2017_Thursday 

Binary classCIC-
IDS2017Thursday 

Classifie
rs 

TP
R 

FP
R 

AU
C 

Incorrec
tly 
Classifi
ed (%) 

TP
R 

FP
R 

AU
C 

Incorrec
tly 
Classifi
ed (%) 

TP
R 

FP
R 

AU
C 

Incorrec
tly 
Classifi
ed (%) 

NB 0.9
72 

0.0
25 

0.9
93 2.778 0.9

75 
0.0
18 

0.9
95 2.516 0.9

82 
0.0
04 

0.9
99 1.755 

J48 0.9
9 

0.0
11 

0.9
95 0.394 0.9

96 
0.0
1 

0.9
97 0.397 1 0.0

05 
0.9
99 0.028 

RF 0.9
94 

0.0
33 1 0.467 0.9

95 
0.0
31 1 0.4648 1 0.0

3 1 0.042 

Bayesin
Net 

0.9
53 

0.0
3 

0.9
94 4.658 0.9

65 
0.0
25 

0.9
99 3.485 0.9

83 
0.0
15 

0.9
99 1.7 

Bagging 0.9
95 

0.0
29 1 0.4181 0.9

96 
0.0
19 1 0.4268 1 0.0

17 1 0.0276 

Adaboos
t 

0.9
94 

0.0
12 1 0.4285 0.9

96 
0.0
1 1 0.4095 1 0.0

05 1 0.0104 
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TABLE 2. 8  

PERFORMANCE ON CICIDS2017 BINARY AND MULTICLASS CLASSIFICATION 
FOR WEDNESDAY  DATA 

 
Multiclass-6 CIC-IDS2017_Wednesday Multiclass-4 CIC-

IDS2017_Wednesday 
Binary class CIC-
IDS2017_Wednesday 

Classifie
rs 

TP
R 

FP
R 

AU
C 

Incorrec
tly 
Classifi
ed (%) 

TP
R 

FP
R 

AU
C 

Incorrec
tly 
Classifi
ed (%) 

TP
R 

FP
R 

AU
C 

Incorrec
tly 
Classifi
ed (%) 

NB 0.9
18 

0.0
19 

0.9
87 8.171 0.9

26 
0.0
19 

0.9
98 7.372 0.9

4 
0.0
15 

0.9
99 5.959 

J48 0.9
98 

0.0
01 1 0.052 1 0 1 0.045 1 0 1 0.036 

RF 0.9
97 

0.0
01 1 0.067 0.9

98 
0.0
01 1 0.0622 0.9

99 
0.0
01 1 0.054 

Bayesin
Net 

0.9
91 

0.0
09 

0.9
97 0.982 0.9

95 
0.0
09 

0.9
99 0.612 0.9

97 
0.0
06 

0.9
99 0.524 

Bagging 1 0 1 0.0481 1 0 1 0.0445 1 0 1 0.0347 
Adaboos
t 1 0 1 0.0441 1 0 1 0.0325 1 0 1 0.0231 
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  The performance Table 2.9-2.12 shows that the TPR is higher when both attributes 

(target class with binary classes and target class with multiclass) are present on the UNSW-

NB15 datasets. The binary class with 45 features UNSW-NB15 NIDS on Table 2.9 has 

100% TPR for ensemble classifiers. In contrast,  the binary class with 43 features UNSW-

NB15 NIDS on Table XI shows a lower detection rate for ensemble classifiers (86 % TPR). 

Similarly, in multiclass 10 UNSW-NB15 NIDS, the TPR is lower in Table 2.12 for 43 

features NIDS than for 45 features NIDS in Table 2.11 because those two attributes are 

highly correlated. 

TABLE 2. 9  
PERFORMANCE ON BINARY UNSW-NB15 WITH 45 FEATURE 

 
Classifiers TPR FPR AUC Incorrectly Classified (%) 
NB 0.911 0.021 0.968 8.8593 
J48 1 0 1 0 
RF 0.996 0.003 1 0.3887 
BayesinNet 0.913 0.098 0.969 8.7014 
Bagging 1 0 1 0 
Adaboost 1 0 1 0 

 
TABLE 2. 10  

PERFORMANCE ON BINARY UNSW-NB15 WITH 43 FEATURE 
 

Classifiers TPR FPR AUC Incorrectly Classified (%) 
NB 0.832 0.195 0.929 16.7893 
J48 0.87 0.154 0.915 12.9707 
RF 0.874 0.15 0.98 12.5528 
BayesinNet 0.833 0.195 0.93 16.7456 
Bagging 0.868 0.157 0.982 13.184 
Adaboost 0.868 0.156 0.972 13.1759 

 
TABLE 2. 11  

PERFORMANCE ON MULTICLASS UNSW-NB15 WITH 45 FEATURE 
 

Classifiers TPR FPR AUC Incorrectly Classified (%) 
NB 0.623 0.035 0.956 37.7119 
J48 0.864 0.017 0.947 13.578 
RF 0.849 0.031 0.966 15.0743 
BayesinNet 0.624 0.25 0.957 37.6399 
Bagging 0.874 0.019 0.961 12.5808 
Adaboost 0.85 0.02 0.979 15.0221 
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TABLE 2. 12  
PERFORMANCE ON MULTICLASS UNSW-NB15 WITH 43 FEATURE 

 
Classifiers TPR FPR AUC Incorrectly Classified (%) 
NB 0.605 0.046 0.937 39.4718 
J48 0.753 0.037 0.915 24.7376 
RF 0.756 0.028 0.963 24.3793 
BayesinNet 0.634 0.045 0.938 37.8542 
Bagging 0.76 0.032 0.952 24.0453 
Adaboost 0.753 0.037 0.928 24.7376 

   
IV. CONCLUSION 

 The primary goal of IDS is to detect network attacks. We find that reducing the 

number of classes increases machine learning classifiers' performance, that is, converting 

the multiclass dataset to a binary dataset. Also, we observed that keeping the highly 

correlated attributes with the target class, attribute with binary class values and attribute 

with multiclass values, increased the machine learning model's performance.  Reducing the 

target class numbers contributed to creating a balanced dataset and eliminating complexity. 

Additionally, we prove that our approach is reliable and accurate and uses very low 

computational resources as compared to the deep learning method, making it suitable for 

real-world NIDS applications. The deep learning method requires high computing power 

where high random-access memory (RAM) and graphical processing units (GPU) are 

required to process the big NIDS dataset. Furthermore, we get similar insights on all NIDS 

datasets while benchmarking on different machine learning algorithms, proving our 

approach's efficacy. 

 Reducing the number of target classes into fewer target classes by regrouping the 

smaller attack classes reduces the imbalances in the NIDS data sets because the number of 

instances of the simulated attacks in the NIDS is always lower as compared to the known 
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attack classes. Similarly, preserving the features related to the target class, the feature that 

is used to deduce the target classes, also increases the performance of the machine learning 

classifiers for the given NIDS because these features are used to deduce the final target 

classes directly.  

  The selection of the three different groups of machine learning classifiers was also 

based on the probabilistic classifiers because these types of classifiers were dominantly used 

in previous days in NIDS research. The decision tree is based on predictive modelling 

approach-based machine learning models. The last categories are the ensemble-based 

machine learning models, which work based on the classifier during classification. The 

selection of the different machine learning models during this NIDS experiment concludes 

that the ensemble methods improved the performance and, hence, intrusion detection 

accuracy. 
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CHAPTER 3.  EFFICACY OF BIDIRECTIONAL LSTM MODEL FOR 

NETWORK-BASED ANOMALY DETECTION 

Abstract- The Internet is vital in daily applications such as education, health, 

business, etc. Increasing the usage of the Internet and technology also increases the risk. 

Cyber attackers can use technology to compromise the triad of the CIA (Confidentiality, 

Integrity, and Confidentiality). Malicious activities occur in our surroundings without our 

knowing it. Cyberattacks cannot be seen physically, though occurring to the Internet of 

things (IoT) devices, personal computers, laptops, and even the networking devices. 

Network anomaly detection is an efficient way of detecting malicious activities. Network-

based anomaly detection captures and analyzes attributes of abnormal behavior in a 

network. Machine learning and deep learning-based approaches are attractive among 

various known methods for network anomaly detection because they can efficiently 

analyze big network traffic data for malicious activities and detect zero-day attacks. A 

Recurrent Neural Network (RNN) model is designed to recognize the sequential 

characteristics of data and then use the patterns to predict the coming scenario. In this 

research work, seven different optimizers (Nadam, Adam, RMSprop, Adamax, SGD, 

Adagrad, and Ftrl), epochs, batch size, and the ratio of training testing data size are 

analyzed for the Bidirectional Long Short-Term Memory (Bi-LSTM) network anomaly 

detection which provides the highest anomaly detection accuracy of 98.52% on the NSL-

KDD binary dataset. The performance is compared using accuracy and F1-score metrics. 

Performance assessment regarding the accuracy and F1-score revealed that the proposed 

Bi-LSTM anomaly detection model exhibited better performance than the other existing 

anomaly detection methods. 
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Keywords— Bi-LSTM, deep learning, LSTM, network intrusion detection system, 

NSL-KDD, machine learning 

I. INTRODUCTION 

  With the invention of information and technology, the most crucial information is 

transmitted in the form of bits from source to 

destination. The transmitted information can be 

voice, image, or data, containing banking 

information, personal information, and network 

traffic. Various tools or methods are available to 

detect and prevent intruders. Anomaly is a 

pattern in the dataset that does not fit into the 

usual behavior of the data, and some detection 

techniques are required to detect it. Outliers and 

anomalies are sometimes used interchangeably in the field of anomaly detection. Anomaly 

detection has numerous applications, including business, network intrusion detection, 

health monitoring systems, credit card fraud detection, and fault detection in critical 

information systems. Anomaly detection is important in cyber security for achieving solid 

protection against cyber adversaries. A system is considered secure if the three computer 

security principles of Confidentiality, Integrity, and Availability (CIA) are properly met 

[47]. An intrusion detection system is a method for monitoring and examining what is 

happening in a computer or network system to detect potential risks by evaluating how 

often CIA computer security guidelines are broken. 

Fig. 3. 1. Taxonomy of anomaly detection [48] 
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  There are two categories of intrusion detection methods: signature-based intrusion 

detection systems (SIDS) and anomaly-based intrusion detection systems (AIDS). Anomaly 

detection systems are classified into two categories based on the sources: network-based 

and host-based intrusion detection systems. Anomaly detection techniques utilize labels to 

identify whether the data is normal or anomalous. There are three different anomaly 

detection techniques such as supervised, unsupervised, and semi-supervised anomaly 

detection methods. AIDS overcomes the SIDS's drawbacks by modeling normal behaviors 

using machine learning, statistical-based, or knowledge-based methods. The different 

anomaly detection approaches are listed below in Fig. 3.1 [48].   

  Deep learning can extract better representations for creating efficient anomaly 

detection models. The traditional machine learning-based network anomaly detection 

algorithms are more suited for small datasets and are mostly performance dependent on how 

the feature engineering is implemented. The split ratio is one of the dominant elements 

influencing the performance of traditional machine learning-based anomaly detection 

methods. The traditional ML methods are simple and have low resource consumption. Still, 

for huge datasets and large features, poorly performed and traditional ML cannot be worked 

on computer vision, natural language processing, image translations, etc. The Convolutional 

Neural Network (CNN) is mostly used in image datasets where the lower layer’s neurons 

do the feature reduction in the network, usually identifying important small-scale features, 

such as boundaries, corners, and intensity differences. Then in higher layers, the network 

combines the lower-level features to form more complex features such as simple shapes, 

forms, and partial objects. And on the final layer, the network combines the lower features 

to produce the output or classification results. LSTM works differently than a CNN because 
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an LSTM is usually used to process and make predictions given data sequences. RNNs were 

designed to retain long-range information so that the information is remembered and not 

lost in a long sequence. BiLSTM adds one more LSTM layer, reversing the information 

flow direction and overcoming the vanishing gradient problems.  

  The deep learning method overcomes the problems in traditional ML, such as being 

suited for huge datasets and large numbers of features. The performance of the deep 

learning-based anomaly detection algorithm depends on the number of neurons, number of 

hidden layers, types of activation function, number of samples (batch size), and epochs 

(iterations) during DL model training and testing. Selecting those hyperparameters, training 

testing data ratio, and architecture of neural network in deep neural networks is vital in 

increasing the detection accuracy of network anomaly detection systems. 

II. RELATED WORK 

 The volume of big data is growing daily, so the traditional machine learning 

algorithm cannot be performed well and needs intensive feature engineering tasks. Deep 

learning greatly improves detection performance. Still, the nature of the dataset used in 

network anomaly detection (balanced and unbalanced), the hyperparameters on deep neural 

networks, training, testing data size, and neural network architecture play a vital role in 

detecting the anomaly. 

 Authors [49] implemented the Bi-LSTM model to overcome the extensive feature 

engineering task required for traditional machine learning-based anomaly detection. Also, 

data augmentation used during data preprocessing on rare attacks (U2R, R2L) was applied 

to create the balanced NSL-KDD dataset resulting in the accuracy and F1 scores better than 

other comparison methods, reaching 90.73% and 89.65%, respectively. Authors [50] 
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proposed a network intrusion detection algorithm that combined hybrid sampling with the 

deep hierarchical network where SMOTE was used to create the balanced dataset. The 

CNN-based Bi-LSTM hybrid technique was used to detect the anomalies on the NSL-KDD 

and UNSW-NB15 datasets and found the highest accuracy of 83.58% and 77.16%, 

respectively. The authors [51] proposed a Bi-directional GAN-based approach to the NSL-

KDD and CIC-DDoS2019 datasets. The bidirectional GAN model works perfectly on the 

imbalance NSL-KDD dataset resulting in an accuracy of 91.12% and an f1 score of 92.68%.  

 The authors used the GAN algorithm to improve the performance of the imbalanced 

NSL-KDD data. Authors [52] proposed a novel solution based on ACGAN and ACGAN-

SVM to solve the data imbalance problem using generative adversarial networks to 

synthesize the attack traffic for IDS. The synthesized attacks are mixed with the original 

data to form the augmented dataset. The authors performed experiments on the NSL-KDD, 

UNSW-NB15, CICIDS2017, and RAWDATA datasets. Among the SVM, DT, and RF 

models, DT provides a higher F1-score of 92% on the NSL-KDD augmented dataset. 

During this work [53], the Authors used a Heterogeneous Ensemble Assisted Machine 

Learning Model for Binary and Multi-Class Network Intrusion Detection to overcome the 

data imbalance problem on KDD99, NSL-KDD, and UNSW-NB15 datasets. The model 

provides the 94.5% true positive rate and 96.2% AUC on the NSL-KDD dataset. Authors 

[54] concluded from the experimental results that the machine learning classifier's 

performance improved when the number of target classes decreased. Authors examined this 

concept on traditional machine learning models, including NB, J48, RF, BayesinNet, 

Bagging, and Adaboost on three NIDS datasets: UNSW-NB15, CIC-IDS2017_Thrusday, 

and KDD99. 
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 Authors [55] studied the Recurrent Neural Network-based IDS model's performance 

in binary and multiclass classification. The number of neurons and different learning rates 

influences the proposed model's performance on the NSL-KDD dataset. The experimental 

results show that RNN-IDS is suitable for modeling a classification model with high 

accuracy. Its performance is superior to traditional machine learning (J48, artificial neural 

network, random forest, and support vector machine) classification methods in binary and 

multiclass classification. In this paper [56],  authors propose a Convolutional Autoencoder-

based (CAE) network anomaly detection method and found a detection accuracy of 96.87% 

on the NSL-KDD dataset. The CAE method was used to reduce and select the more relevant 

features for the anomaly detection algorithm.  

 In this paper [57], authors explored the effectiveness of various Autoencoders in 

detecting network intrusions. The authors compared the performance of 4 different 

autoencoders, including Sparse Autoencoders, Undercomplete Deep Autoencoders, and 

Denoising Autoencoder, on the NLS-KDD dataset and achieved an accuracy of 89.34% by 

using a Sparse Deep Denoising Autoencoder. Authors [58] proposed a 5-layer autoencoder 

(AE)-based model better suited for network anomaly detection. The optimal model 

architectures are better equipped for feature learning and dimension reduction to produce 

better detection accuracy and f1-score by achieving the detection accuracy and f1-score at 

90.61% and 92.26%, respectively, on the NSL-KDD dataset. The authors utilized the 

reconstruction error function to decide whether a network traffic sample is normal or 

abnormal. 

 In this paper [59], authors implemented a network intrusion detection method 

combining CNN and Bi-LSTM network on the KDD99 dataset. The authors studied the 
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effect of hidden layers, nodes, and the number of iterations to improve anomaly detection 

accuracy, where the accuracy of KNN, J48, Deep Forest, Naïve Bayes, Random Forest, and 

CNN-based Bi-LSTM. The CNN-based Bi-LSTM provides the highest detection accuracy 

of 95.4%. Authors [60] compared the single-layer and multilayer LSTM (4 layers) for 

weather forecasting on the weather dataset collected by Weather Underground at Hang 

Nadim Indonesia Airport with the highest validation accuracy of 80.60%. The different 

numbers of nodes on four hidden layers were used 200, 100, 90, and 50, and the data split 

ratio taken is 30 % test data for 500 epochs. The Authors [61] implemented the deep learning 

model based on Bi-directional LSTM on KDDCUP-99 and UNSW-NB15 datasets with 

outstanding results with 99% accuracy for both KDDCUP-99 and UNSW-NB15 datasets. 

Most existing models cannot efficiently detect rare attack types, especially User-to-Root 

(U2R) and Remote-to-Local (R2L) attacks. These two attacks often have lower detection 

accuracy than other kinds of attacks. Authors in [62] proposed a Bidirectional Long-Short-

Term-Memory (Bi-LSTM) based intrusion detection system to handle the aforementioned 

challenges on the NSL-KDD dataset. This Bi-LSTM model provided an accuracy of 94.26% 

for binary classification.  

 The impact of batch size on the performance of CNN and the impact of learning 

rates were studied for image classification, specifically for medical images [63]. According 

to their findings, a larger batch size typically does not result in high accuracy, and both the 

learning rate and the optimizer employed will have a big impact. The network will train 

more effectively, particularly during fine-tuning, if the learning rate and batch size are 

reduced. 
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 Various methods were implemented to overcome the data imbalance problem, 

including data augmentation on [49], SMOTE on [50], GAN technology on [51] [52], 

Heterogeneous ensemble assisted on [53], reducing the target class combining the smaller 

class in another new class on [54]. Huge numbers of research works related to network 

anomaly detection are examined in deep learning, including RNNIDS in [55], CAE in [56], 

Autoencoder in [57], multilayer Autoencoder in [58], CNN Bi-LSTM hybrid method in 

[59], and Bi-LSTM in [61] [62]. 

 Authors [62] and [61] do not mention the data preprocessing, train-test data ratio, 

and how those Bi-LSTM hyperparameters are adopted during their experiments. The 

authors [60] found Bi-LSTM for weather forecasting without referencing the values of the 

hyperparameters in their experiments. The authors [55] did not analyze the number of 

epochs and did not mention the percentages of the split ratio for the KDDTrain+ dataset. 

Most of the above research works are focused on increasing the model accuracy of either 

traditional or deep machine learning models. The research on selecting the hyperparameters 

in deep learning-based models, training testing data ratio, and architecture of deep neural 

networks are not focused on. Some researchers do not mention how those values are adopted 

in their research works. Hence, the research focused on improving those limitations on 

network anomaly detection systems by experimenting with the NSL-KDD dataset. 

   The main contributions of this research work are: 

1)  Investigating the effect of optimizers, batch size,  the number of epochs Vs 

performance of the Bi-LSTM. 

2)  Investing in the train and test split ratio to improve the network anomaly detection 

accuracy on the NSL-     KDD. 



57 
 

 
 

3)  Investing the number of layers and memory elements to improve the Bi-LSTM on the 

NSL-KDD dataset.  

4) This research presents the development and implementation of network anomaly 

detection using a Bi-   LSTM-based RNN model that can detect anomalies in a 

network with a high accuracy of 98.52%. 

III. SYSTEM MODEL  

  The overall proposed model encompasses the following steps. 

 Step-1 Data Collection and Modelling  

 Step-2 Data Pre-procession 

 Step-3 Prepare the training and testing dataset  

 Step-4 Train and Test the Bi-LSTM Model  

 Step-5 Model Evaluation and Anomaly Detection 

 Step-6 Model Compare and Decision 

The overall implementation schematic of the Bidirectional LSTM-based model is 

given in Fig. 3.2. A detailed discussion of the above-stated methods is provided in the 

subsequent sections. 

A. Data Collection and Modelling  

  In this research, we used the KDDTrain+ dataset, one of the datasets available on 

NSL-KDD. This dataset contains the full NSL-KDD train set, including attack-type labels 

and difficulty level. It has 41 features with five distinct attack classes, Normal, DoS, Probe, 

R2L, and U2R. NSL-KDD [64] is an improved version of the KDD99 network intrusion 

dataset, does not include redundant records in the train set, and has no duplicate records in 

the test sets. The KDDTrain+ dataset contains 125973 records and 41 features. This dataset 
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is balanced because 53.46% of records are normal, and 46.54% are abnormal. We selected 

this dataset because the normal and abnormal records contained the subset of the dataset is 

balanced.  

B. Data Pre-processing  

 
The KDDTrain+ dataset contains 125973 records and 41 features. During the data 

pre-processing, the class label is assigned 1 for normal and 0 for abnormal records; hence 

the dataset becomes the binary class dataset. Then, three categorical features: 

‘protocol_type,’ ‘service,’ and ‘flag,’ are converted into numeric features using dummy one 

hot encoding. The standard scalar method is used to normalize the dataset. For the feature 

reduction, attributes with more than 0.5 correlation with encoded attack label attribute are 

only preserved.   

C. Prepare the Training and Testing Dataset    

  The train-test split approach measures how well machine learning algorithms 

perform when used to make predictions from data that was not used to train the model. Since 

the dataset we pre-processed is only one set of data, the two set of datasets to implement the 

machine learning algorithms. The train test split ratio does not have rules for the researcher 

to follow, but the common slit ratio is train 80% and test 20%, train 60% and test 40%, train 

Fig. 3. 2. Block diagram of Bi-LSTM model. 
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70% and test 30%, train 75% and test 25%. We performed the experiment to choose the 

split ratio where our Bi-LSTM model provides the best result is 70% train and 30% test 

dataset.  

D. Bi-LSTM Model 

 A recurrent neural network (RNN) consists of feedback loops that process the 

sequences of data patterns and predict outcomes. Those loops allow the data to be shared 

with available nodes and predictions according to the collected information called memory. 

RNN has been used to solve machine learning problems such as speech recognition, 

language processing, and image classification. LSTM addresses the problem of the 

vanishing gradients of RNN. LSTM architecture consists of the memory block and three 

multiplicative units- the input, output, and forget gates which are analogous to write, read 

and reset operations for the cells. The LSTM memory cells can store and access data for 

extended periods because of the multiplicative gates, which prevents the vanishing gradient 

problem. 

  Conventional RNNs have the limitation that they can only use the previous context. 

Bidirectional RNN overcomes those problems by processing the data in both directions 

with two hidden layers, then feeding forwards to the same output layer.  Generally, in a 

normal LSTM network, the output is taken directly. In the case of a bidirectional LSTM 

network, the output of the forward and backward layers at each stage is given to the 

activation layer. This output contains information on past and future patterns or data. The 

bi-directional LSTM predicts or tags the sequence of each element by using finite 

sequences in the context of previous and subsequent items. This results from two LSTMs 

processed in series, one from right to left and the other from left to right.  
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E. Model Evaluation and Anomaly Detection   

  Different experiments are performed to evaluate the Bi-LSTM model. Machine 

learning (ML) or deep learning (DL) model does not provide consistency in performance. 

Hence the model hyper-parameters need to be examined to obtain better performance. The 

determination of optimizer, the number of epochs, batch size, and train-test split ratio are 

determined by comparing the accuracy and F1-score of the Bi-LSTM model. Finally, the 

Bi-LSTM model performance parameters are compared with the previously published 

research results to evaluate our Bi-LSTM model’s performance.  

F. Model Comparision and Decision Making 

 Different sets of experiments to determine the values of the hyperparameters for the 

best result. The determination of optimizer, the number of epochs, batch size, and train-test 

split ratio are determined by comparing the accuracy and F1-score of the Bi-LSTM model. 

Finally, the Bi-LSTM model performance parameters are compared with the previously 

published research results to evaluate our Bi-LSTM model’s performance. The performance 

metrics are recorded and compared for NSL-KDD binary NIDS datasets regarding f1-score 

and accuracy. 

IV. RESULTS AND DISCUSSIONS 

 The experiments were adapted on a 64-bit Windows 10 machine with 16G RAM 

and an i7-1.99GHz processor. The versions of python, Keras, and TensorFlow used during 

this research work were 3.7.13, 2.6.0, and 2.9.1, respectively. The determination of training 

and testing data ratio, epochs, batch size, and selection of optimizer for the Bi-LSTM model 

was examined in the different experiments, which are explained below.  
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A. Experiment-1 Optimizers Vs Bi-LSTM Model Accuracy 

  In this experiment, the Bi-LSTM model experimented with the NSL-KDD dataset, 

whose specifications are given in the previous sections. The right optimizer is necessary 

for the model to improve training speed and performance. The selection of an optimizer is 

very important because it helps the ML /DL model to get results faster. TensorFlow 

supports nine optimizer classes, including Adadelta, Adagrad, Adam, Adamax, Ftrl, 

Nadam, RMSprop, SGD, and gradient descent were compared. During this experiment, Bi-

LSTM hyperparameters were chosen randomly, which are shown in Table 3.1 below. The 

Bi-LSTM model was created using 64 units, two bidirectional LSTM hidden layers with 

50 units, and one output-dense layer. Each layer in Bi-LSTM used a relu activation function 

and a 20% dropout rate.  

 
TABLE 3. 1  

OPTIMIZER VS ACCURACY FOR BI-LSTM 
 

Test size = 50%, epochs = 105, batch Size = 200 
SN Optimizer Accuracy % F1-Score % 
1 Nadam 98.35 98.47 
2 Adam 98.33 98.44 
3 RMSprop 98.28 98.39 
4 Adamax 98.07 98.21 
5 SGD 96.79 97.03 
6 Adagrad 91.65 92.49 
7 Ftrl 53.36 69.59 

  

  Observing the above results (see Table 3.1), it can easily be found that the Nadam 

optimizer is the winning optimizer with the highest accuracy of 98.35% and the highest f1-

score of 98.47%.  Nadam is an improved version of the Adam algorithm that integrates 

Nesterov momentum, improving the optimization algorithm's performance. 
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B. Experiment-2 Train Test Ratio Vs. Accuracy 

  The train-test split ratio and Bi-LSTM model accuracy were studied in this 

experiment. Data splitting is crucial in data science, especially when building models from 

data. The train-test split approach is used to quantify how well machine learning algorithms 

perform when used to predict outcomes from data that was not used to train the model. 

After the training is completed, the testing data set is utilized. There is no set guideline for 

how the data should be split on training and test data from the given data set. The test split 

ratio is examined to obtain better network anomaly detection using Nadam optimizer on 

the NSL-KDD binary dataset.  

TABLE 3. 2  
TRAIN TEST RATIO VS. ACCURACY ON BI-LSTM 

 
Optimizer = Nadam, epochs = 105, batch Size = 200 

SN Test Data size % Accuracy % F1-Score % 
1 30 98.48 98.57 
2 25 98.47 98.57 
3 50 98.39 98.5 
4 40 98.35 98.46 
5 20 98.33 98.44 
6 60 98.28 98.4 
7 10 98.17 98.29 
8 70 98.15 98.29 
9 80 98.15 98.29 
10 90 97.98 98.13 

  
  This experiment provides the train-test ratio for the highest network anomaly 

detection for the Bi-LSTM model on the NSL-KDD dataset. The performance metrics are 

recorded in Table 3.2, where the test split of 30% achieved the proposed Bi-LSTM model 

with the highest accuracy and f1-score of 98.48% and 98.57%, respectively.  
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C. Experiment-3 Batch Size Vs. Bi-LSTM Accuracy 

  The effect of the batch sizes on the Bi-LSTM accuracy and the training time was 

studied during this experiment. This experiment aims to find the optimal batch size for the 

best model performance.   

TABLE 3. 3  
BATCH SIZE VS. ACCURACY ON BI-LSTM 

 
Optimizer = Nadam, epochs = 105, test_size= 0.30 

SN Batch Size Accuracy % F1-Score % Prgm Exe time (sec) 
1 50 98.48 98.58 2127.2346 
2 100 98.46 98.56 1228.779 
3 15 98.45 98.56 5671.738 
4 200 98.45 98.55 796.8976 
5 300 98.45 98.55 553.4444 
6 150 98.42 98.52 858.07 
7 450 98.41 98.51 454.989 
8 350 98.4 98.51 527.1532 
9 400 98.38 98.48 460.8835 
10 500 98.36 98.47 514.7698 
11 250 98.35 98.46 616.4657 

  
  The smaller batch size introduces small amounts of data samples and takes longer 

to train the Bi-LSTM model compared to the larger batch size. Model accuracy, F1-score, 

is shown in Table 3.3. The experimental result shows that the batch size of 50 during this 

Bi-LSTM model for the NSL-KDD dataset produces the best results in terms of accuracy 

and f1-score. Larger batch sizes take less time to train but are less accurate, which is an 

important trade-off for this Bi-LSTM model.  

D. Experiment-4 Epochs Vs. Bi-LSTM Accuracy 

  The number of times the learning algorithm will go over the complete training 

dataset is determined by the hyperparameter known as the epoch. The number of epochs 

can be any integer value that lies between 1 to infinity. Traditionally, the ML/ DL model 

uses large values of epochs.   
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TABLE 3. 4  
EPOCHS VS. BI-LSTM MODEL ACCURACY 

 
Optimizer = Nadam, batch_size = 50, test_size= 0.30 

SN Epochs Accuracy % F1-Score % Prgm Exe time (sec) 
1 205 98.52 98.62 4103.7667 
2 100 98.48 98.58 1878.8025 
3 125 98.48 98.58 2470.6198 
4 150 98.48 98.58 2934.2485 
5 175 98.48 98.58 3965.207 
6 75 98.46 98.56 1465.5138 
7 50 98.38 98.48 942.1289 
8 45 98.37 98.47 1002.0923 
9 35 98.35 98.46 761.2784 
10 25 98.3 98.41 527.5244 
11 15 98.13 98.25 322.5288 
12 5 97.9 98.03 127.0577 

  
This experiment aims to determine the epochs where the Bi-LSTM model provides 

the highest accuracy. During this experiment, Bi-LSTM hyperparameters were chosen 

randomly same as in the previous experiment. The larger epochs take a longer time to train 

the model. We chose epochs ranging from 5 to 205 with some intervals; the accuracy and 

f1-score are higher for 205 epochs. The training time for Bi-LSTM is increased for a large 

value of epoch. During this experiment, a batch size of 205 improves the Bi-LSTM model's 

accuracy of 98.52% in detecting network anomalies. 

E. Experiment-5 Bi-LSTM layers parameters Vs. Accuracy 

  We investigated the optimizer, epochs, batch size, and train test data split ratio from 

the above experiments A-D and found that the value of the hyperparameter: Nadam 

optimizer, 205 epochs, 50 batch size, 30% test data, and 70% train data generate the best 

performance which is measured using performance evaluation metrics. During this 

experiment, we examined the combination of the numbers of units for the multilayer Bi-

LSTM model. The output layer provides the probability of selecting either a normal or 
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abnormal class, so the softmax activation function works best for binary class classification 

problems.  

TABLE 3. 5  
BI-LSTM LAYERS PARAMETERS VS. ACCURACY 

 
Optimizer = Nadam, batch_size = 50, test_size= 0.30 [ Units (activation fn)] 
SN Input Layer Hidden Layer 1 Hidden Layer 2 Accuracy 
1 64 (relu) 50 (relu) 50 (relu) 98.52 
2 80 (relu) 64 (relu) 64 (relu) 98.48 
3 49 (sigmoid) 128 (Sigmoid) 128 (sigmoid) 98.18 
4 16 (selu) 16 (selu) 16 (selu) 97.97 
5 16 (relu) 16 (relu) 16 (relu) 97.93 
6 4 (relu) 4 (relu) 4 (relu) 97.55 
7 8 (relu) 8 (relu) 8 (relu) 97.48 
8 4 (sigmoid) 4 (sigmoid) 4 (sigmoid) 97.05 

 
  The number of combinations of Bi-LSTM units and activation functions was used 

in input and hidden layers during this experiment; some of the experiment results are 

included in Table 3.4. The experimental result shows that the 64 Bi-LSTM units in the input 

layer and 50 Bi-LSTM units in both hidden layers produce the highest accuracy of 98.52% 

during network anomaly detection. 

V. CONCLUSION  

  Comparing the result with existing research [61] for Bi-LSTM, the model produces 

a higher accuracy of 98.52%, which is greater than 94.26%. The values of Bi-LSTM model 

hyperparameters, including optimizer, epochs, batch size, and the training testing dataset 

ratio for the multilayer Bi-LSTM neuron architecture (layers, activation function, and 

memory units) are investigated for the highest detecting accuracy. All the above 

experimental results show that the Bi-LSTM model with those investigated parameters can 

effectively improve the detection accuracy and f1-score. 
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CHAPTER 4. EFFICACY OF CNN-BIDIRECTIONAL LSTM HYBRID MODEL 

FOR NETWORK-BASED ANOMALY DETECTION 

Abstract- With the development of the web and the internet, computer networks 

have become an important tool to transfer information digitally, which increases the 

system's threats and vulnerability. Cyber attackers can use the internet and tools to 

compromise the triad of the CIA (Confidentiality, Integrity, and Availability). Network 

anomaly detection is challenging while detecting anomalous behavior in a network due to 

the large-scale data, imbalance nature of attack class, and huge numbers of features in the 

dataset. Traditional Machine learning methods are not very efficient in solving those 

problems. Deep learning has proven to be more efficient in detecting network-based 

anomalies. A Recurrent Neural Network (RNN) model is designed to recognize the 

sequential data characteristics to predict. We proposed a convolutional neural network with 

bidirectional long-short memory (CNN Bi-LSTM) model to analyze the hyperparameters, 

including optimizers (Nadam, Adam, RMSprop, Adamax, SGD, Adagrad, Ftrl), epochs, 

batch size, learning rate, and neural network model architecture of CNN-BLSTM 

algorithms. Those analyzed hyperparameters provide the highest anomaly detection 

accuracy of 98.27% and 99.87% on the NSL-KDD and UNSW-NB15, respectively. 

Performance assessment regarding the accuracy and F1-score revealed that the proposed 

CNN Bi-LSTM anomaly detection model exhibited better performance than the other 

existing anomaly detection methods.  

Keywords— Bi-LSTM, CNN, deep learning, LSTM, machine learning, network 

intrusion detection system, NSL-KDD, UNSW-NB15 
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I. INTRODUCTION 

  As technology develops rapidly, the method of transmission of information from 

source to destination has evolved through the wired, wireless, or guided network. The 

development of network technology plays a vital role in people’s daily activities. Any 

system is considered secure if the three computer security principles of confidentiality, 

integrity, and availability (CIA) are properly met. Hence information security is securing 

information from an unauthorized agent, preventing access, use, disclosure, modification, 

recording, or data destruction. 

  A firewall and antivirus software cannot completely protect the traditional network. 

The antivirus and firewall detect those activities already defined as anomalous and set the 

rule to block those activities by the expert. Outliers and anomalies are sometimes used 

interchangeably in anomaly detection. Anomaly detection has abundant applications, 

including business, network intrusion detection, health monitoring systems, credit card 

fraud detection, and fault detection in critical information systems. Anomaly detection is 

important in cyber security for solid protection against cyber adversaries. There must be 

secure network resources against cyber threats to protect the system. 

  Anomalies are classified as point, contextual, and collective according to the output 

from the detection method used [48]. Point anomaly occurs when a certain behavior deviates 

from the regular pattern. Contextual anomalies are strange patterns in a particular context 

that always differ from many normal behaviors. The collective anomaly occurs when a 

group of similar instances acts anomalously competed with the dataset of normal activities. 

  There are two categories of intrusion detection methods: signature-based intrusion 

detection systems (SIDS) and anomaly-based intrusion detection systems (AIDS). Anomaly 
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detection systems are classified into two categories based on the sources: network-based 

and host-based intrusion detection systems. Anomaly detection techniques utilize labels to 

identify whether the data is normal or anomalous. There are three different anomaly 

detection techniques such as supervised, unsupervised, and semi-supervised anomaly 

detection methods. AIDS overcomes the SIDS's drawbacks by modeling normal behaviors 

using machine learning (ML), statistical-based, or knowledge-based methods. Anomaly-

based detection can also produce false results caused by changes in user habits. 

 Most traditional machine learning algorithms are shallow learning methods 

emphasizing feature engineering suited for small datasets. Feature engineering requires time 

and domain expertise to generate the features and remove those irrelevant features from the 

anomaly detection model. The anomaly detection performance depends on how the feature 

engineering is implemented and the data preprocessed carried out. The traditional ML 

methods are simple, have low resource consumption, and perform poorly on computer 

vision, natural language processing, and image translations.  

 CNN is mostly used in image datasets where the lower layer’s neurons reduce the 

network’s features, usually identifying important small-scale features, such as boundaries, 

corners, and intensity differences. Then in higher layers, the network combines the lower-

level features to form more complex features such as simple shapes, forms, and partial 

objects. And on the final layer, the network combines the lower features to produce the 

output or classification results.  

 An LSTM works differently than a CNN because an LSTM is designed to retain 

long-range information so that the information is remembered and not lost in a long 
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sequence. Bi-LSTM adds one more LSTM layer, reversing the information flow direction 

and overcoming the vanishing gradient problems.  

  The deep learning method overcomes the problems in traditional ML. The 

performance of the deep learning-based anomaly detection algorithm depends on neural 

network architecture, number of hidden layers, types of activation function, number of 

samples (batch size), and epochs during DL model training and testing. Selecting those 

hyperparameters and architecture of neural networks in deep neural networks is vital in 

increasing the detection accuracy of network anomaly detection systems. 

II. RELATED WORK 

  Due to the development of information and technology, many end terminals are 

connected to the internet and network. The most terminal connected to the internet are smart, 

and they generate a vast amount of data called big data. Machine learning and deep learning 

algorithms process the data and make predictions from observations and data that generate 

valuable insights. The volume of big data is growing daily, so the traditional machine 

learning algorithm cannot be performed well and needs intensive feature engineering tasks. 

Deep learning greatly improves detection performance. Still, the nature of the dataset, 

feature engineering, the hyperparameters on deep neural networks, and neural network 

architecture plays a vital role in detecting the anomaly in network intrusion detection 

systems.  

 Traditional ML depends heavily on feature engineering, which is often time-

consuming, complex, and impractical during real-time applications. Authors [65] purposed 

CNN and RNN-based payload classification approach to detect attacks and achieved an 

accuracy of 99.36% and 99.98%, respectively, on the DARPA98 dataset. Authors [66] 
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proposed the CNN with Gated Recurrent Unit (GRU) model to address the class imbalance 

problem by adapting a hybrid sampling algorithm combining Adaptive Synthetic Sampling 

(ADASYN) and Repeated Edited nearest neighbors (RENN). Random forest and Pearson 

correlation analysis were used to solve the feature redundancy problem. Their CNN-GRU 

model outperformed with an accuracy of 86.25%, 99.69%, and 99.65% on UNSW_NB15, 

NSL-KDD, and CIC-IDS2017 datasets, respectively.  

  Authors [49] proposed that the deep learning-based network intrusion detection 

model used adaptive synthetic sampling (ADASYN) to balance the dataset. The 

autoencoder is used to reduce dimensionality on NSL-KDD. The CNN-BLSTM-based deep 

learning model provided the highest accuracy and F1 score of 90.73% and 89.65%, 

respectively. Authors [67] federal transfer learning and convolutional neural networks to 

solve the problem that arises from data imbalance and different data distribution from the 

different information sources. The model provided average model accuracy of 86.85% on 

the UNSW-NB15 multiclass network dataset. Authors [53]  used a Heterogeneous 

Ensemble Assisted Machine Learning Model for Binary and Multi-Class Network Intrusion 

Detection to overcome the data imbalance problem on KDD99, NSL-KDD, and UNSW-

NB15 datasets. The model provides the 94.5% true positive rate and 96.2% AUC on the 

NSL-KDD dataset. In [54], the Authors concluded from the experimental results that the 

machine learning classifier's performance improved when the number of target classes 

decreased. Authors examined this concept on traditional machine learning models, 

including NB, J48, RF, BayesinNet, Bagging, and Adaboost on three NIDS datasets: 

UNSW-NB15, CIC-IDS2017_Thrusday, and KDD99. 
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 Authors [68] proposed the method to achieve a successful classification with low 

computational cost by grouping attributes according to the conditions on which they are 

collected and creating the cluster attributes for each group with K-means with an accuracy 

of 98.84% on the KDD99 dataset. The detection accuracy for U2R is very low, 21.92%, 

which reduces the overall model performance. The authors [69] implemented the hybrid 

approach combining the CNN and LSTM to improve the anomaly classification accuracy 

of 98.1% and 96.7% on NSL-KDD and CICIDS2017 datasets, respectively. Authors [70] 

proposed the hybrid model combining CNN and LSTM to improve the intrusion detection 

capabilities of advanced metering infrastructure (AMI) utilizing the cross-layer features 

fusion. The model produced the highest accuracy of 99.95% on KDD Cup99 and 99.79% 

on the NSL-KDD dataset, having low U2R  detection capabilities. Authors [71] 

implemented the hybrid network of CNN and LSTM to improve intrusion detection to extra 

network traffic data's spatial and temporal features. 

 Authors [72] in this paper implemented the method based on the mean control of the 

CNN-BLSTM algorithm to overcome the traditional data preprocessing and unbalanced 

numerical distribution on the NSL-KDD dataset, providing the highest accuracy of 99.10%. 

Still, accuracy for the fewer data class shows poorly. Authors [73] proposed a DL model 

combining with CNN and Bidirectional LSTM to incorporate the learning of spatial and 

temporal features of the data on the accuracy of 93.84% and 99.30% and binary class 

UNSW-NB15  and NSL-KDD datasets, respectively. Authors [74]  used CNN Bi-LSTM 

algorithms on multiclass NSL-KDD dataset and obtained an accuracy of 96.3% where one-

hot encoding and min-max normalization are used during data preprocessing. Authors [59] 

implemented the CNN Bi-LSTM algorithm on preprocessed and obtained an accuracy of 
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95.4% on the NSL-KDD dataset. The C5.0 decision tree model is combined with the CNN 

Bi-LSTM model to skip the design feature selection and directly learn the model to represent 

features of high dimensional data. The Authors [61] implemented the deep learning model 

based on Bi-directional LSTM on KDDCUP-99 and UNSW-NB15 datasets with 

outstanding results with 99% accuracy for both KDDCUP-99 and UNSW-NB15 datasets. 

Most existing models cannot efficiently detect rare attack types, especially User-to-Root 

(U2R) and Remote-to-Local (R2L) attacks. These two attacks often have lower detection 

accuracy than other kinds of attacks. Authors in [62] proposed a Bi-LSTM-based intrusion 

detection system to handle the aforementioned challenges on the NSL-KDD dataset. This 

Bi-LSTM model provided an accuracy of 94.26% for binary classification. The authors [51] 

proposed a Bi-directional GAN-based approach to the NSL-KDD and CIC-DDoS2019 

datasets. The bidirectional GAN model works perfectly on the imbalance NSL-KDD dataset 

resulting in an accuracy of 91.12% and an f1 score of 92.68%. 

 The deep learning-based model in [65], [66] overcome traditional ML problems to 

detect the anomaly. Data imbalance problems are addressed [49], [67], [53], and [54] . 

Feature engineering is the most important factor in improving the accuracy of the ML/DL 

model. Huge numbers of research have been done related to feature engineering, grouping 

attributes in [68], [69], [70], [71]. A Bi-LSTM combines two separate LSTMs to permit 

running input in two directions from the past to the future and from the future to the past to 

improve the traditional LSTM. Bi-LSTM was implemented in [72], [73], [74], [59], [61], 

[62], [51] to improve the model anomaly detection accuracy. 

 Most of the above research works focus on increasing the accuracy of traditional or 

deep machine learning models, working for feature engineering and data imbalance. The 
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research on selecting the hyperparameters in deep learning-based models, training testing 

data ratio, and architecture of deep neural networks are not focused on. Some researchers 

do not mention how those values are adopted in their research works. Hence, this research 

focused on improving those limitations on network anomaly detection systems by 

experimenting with the NSL-KDD  and UNSW-NB15 datasets. 

   The main contributions of this research work are: 

1) Investigating the effect of CNN Bi-LSTM architecture Vs. performance of CNN Bi-   

LSTM. 

2) Investigating model performance Vs. Hyperparameters on both NIDS datasets, i.e., 

NSL-KDD and UNSW-NB15. 

3) Investing the number of layers and memory elements to improve the CNN Bi-LSTM.  

4) This research presents the development and implementation of network anomaly 

detection using a CNN Bi-LSTM model that can detect anomalies with high accuracy 

of 98.27 % and 99.87% on NSL-KDD and UNSW-NB15, respectively. 

 The remainder of the paper is as follows. Section II describes the system model of our 

proposed CNN Bi-LSTM approach. Section III illustrates the results and discussion, while  

Section IV concludes this research work. 

III. SYSTEM MODEL  

  The overall proposed model encompasses the following steps. 

 Step-1 Data Collection  

 Step-2 Data Pre-processing 

 Step-3 Prepare the training and testing dataset  

 Step-4 Train and Test CNN Bi-LSTM model  
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 Step-5 Model Evaluation and Anomaly Detection 

 Step-6 Model Compare and Decision 

The overall implementation schematic of the CNN bidirectional LSTM-based model 

is shown in Fig. 4.1. A detailed discussion of the above-stated methods is provided in the 

subsequent sections. In Fig. 4.2., the detailed architecture of neural networks and CNN and 

Bi-LSTM layers components are clearly shown.  

A. Data Collection and Modelling  

This research used two datasets, NSL-KDD KDDTrain [64] + and UNSW-NB15, 

where The KDDTrain+ dataset contains the full NSL-KDD train set, including attack-type 

labels and difficulty level. It has 41 features with five distinct attack classes, Normal, DoS, 

Probe, R2L, and U2R. Typically, these features are classified into various groups, such as 

basic, content, and time-based features. NSL-KDD is an improved version of the KDD99 

network intrusion dataset, does not include redundant records in the train set, and has no 

duplicate records in the test sets. The KDDTrain+ dataset contains 125973 records and 41 

features. This dataset is balanced because 53.46% of records are normal, and 46.54% are 

abnormal.  

The Australian Centre for Cyber Security (ACCS) cybersecurity research team 

created the UNSW-NB15 dataset [75]  to solve issues with the KDD99 dataset. The data 

used in this research comprises 42 features. This dataset consists of various attacks, 

including Analysis, Backdoor, DoS, Exploit, Fuzzers, Generic, Reconnaissance, Shellcode, 

and Worms counts of 2677, 2329, 16353, 44525, 24246, 58871, 13987, 1511, and 174, 

respectively. The normal traffic of 93000 data makes the total data 257673. 
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B. Data Pre-processing  

  During the KDDTrain+ data preprocessing, the class label is assigned 1 for normal 

and 0 for abnormal records; hence the dataset becomes the binary class dataset. Then, three 

categorical features: ‘protocol_type,’ ‘service,’ and ‘flag,’ are converted into numeric 

features using dummy one hot encoding. The standard scalar method is used to normalize 

the dataset. For the feature reduction, attributes with more than 0.5 correlation with 

encoded attack label attributes are only preserved, resulting in 93 features on the final 

dataset. 

  UNSW-NB15 data sets consist of test and training separate files. Both contain 45 

features, including attack categories and labels. The same methods are used to preprocess 

both test and training files. Dummy one hot encoding is used for categorical features (proto, 

service, state), and the standard scalar method is used to normalize the numerical features 

before combining them. The empty columns are inserted in the location where the features 

are missed after one hot encoding. All attack categories are grouped into a single attack 

category to create the binary dataset. After preprocessing, the training and test data sizes 

become (82332, 199) and (175341. 199), respectively.   
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C. Prepare the Training and Testing Dataset    

  The train-test split approach measures how well machine learning algorithms 

perform when used to make predictions from data that was not used to train the model. We 

choose the 70:30 split ratio where our CNN Bi-LSTM model for KDDTrain+ dataset with 

70% train and 30% test datasets. There are two separate files chosen in the case of UNSW-

NB15, one for training and another for testing the model. The details about the number of 

training and testing data are explained in the data preprocessing section above. 

D. Bi-LSTM Model 

 Convolutional Neural Network (CNN) are deep neural networks that can recognize 

and classify using the image format. CNN used the convolutional operation to identify the 

various features of the images then pooling layers extracts the features and a fully 

connected layer that utilizes the output from the previous layer to classify. Convolutional 

layers and pooling layers are used for feature extraction whereas the last fully connected 

dense layer is used for classification purposes.   

Fig. 4. 1 Block diagram of CNN-BLSTM model. 
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 A recurrent neural network (RNN) consists of feedback loops that process the 

sequences of data patterns and predict outcomes. RNN consists of memory to store the 

previous and future state information. RNN has been used to solve machine learning 

problems such as speech recognition, language processing, and image classification. 

LSTM addresses the problem of the vanishing gradients of RNN. LSTM architecture 

consists of the memory block and three multiplicative units- the input, output, and forget 

gates which are analogous to write, read and reset operations for the cells. The LSTM 

memory cells can store and access data for extended periods because of the multiplicative 

gates, which prevents the vanishing gradient problem. A bidirectional RNN often combines 

two separate RNNs to permit running input in two directions: from the past to the future 

and from the future to the past. The forward and backward LSTM networks comprise the 

two LSTM networks that comprise the Bi-LSTM. The goal of the forward LSTM hidden 

layer is to extract features in the forward direction, and the backward one is to extract 

features in the backward direction. The bi-directional LSTM predicts or tags the sequence 

of each element by using finite sequences in the context of previous and subsequent items. 

This results from two LSTMs processed in series, one from right to left and the other from 

left to right. The CNN and Bi-LSTM model consists of several layers with 

hyperparameters. The CNN Bi-LSTM architecture is shown in Fig. 4.2.  

Fig. 4. 2. CNN Bi-LSTM model architecture. 
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E. Model Evaluation and Anomaly Detection   

  Machine learning (ML) or deep learning (DL) model does not provide consistency 

in performance. Hence the model hyper-parameters need to be examined to obtain better 

performance. The determination of optimizer, the number of epochs, batch size, dropout, 

and learning rate are determined by comparing the accuracy and F1-score of the Bi-LSTM 

model. Finally, the CNN Bi-LSTM model performance parameters are compared with the 

previously published research results to evaluate our Bi-LSTM model’s performance.  

F. Model Comparision and Decision Making 

 Different sets of experiments to determine the values of the hyperparameters for the 

best result. The determination of optimizer, the number of epochs, batch size, and train-test 

split ratio are determined by comparing the accuracy and F1-score of the Bi-LSTM model. 

Finally, the Bi-LSTM model performance parameters are compared with the previously 

published research results to evaluate our Bi-LSTM model’s performance. The performance 

metrics for NSL-KDD and UNSW-NB15 binary NIDS datasets regarding f1-score and 

accuracy are recorded and compared. 

IV. RESULTS AND DISCUSSIONS 

 The experiment was performed on the Anaconda Navigator Jupyter python platform 

installed on the central processing unit encompassing a 64-bit Windows 10 machine with 

16G RAM and an i7-1.99GHz processor. The versions of python, Keras, and TensorFlow 

used during this research work were 3.7.13, 2.6.0, and 2.9.1, respectively.  

 The model architecture shown in Fig. 4.2. consists of 1 convolution layer with 16 

units, max-pooling, and batch normalization, Bi-LSTM layer 1 with 50 memory units, 

reshape, max-pooling, and batch normalization; the Bi-LSTM layer 2 with 100 memory 
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units and dropout. Finally, the output is taken using a Dense layer with a sigmoid activation 

function. The model detection accuracy is compared by tuning optimizers, learning rate, 

epochs, batch size, and dropout rate in the different experiments on NSL-KDD and UNSW-

NB15 datasets, which are explained below. 

A. Experiment-1 Optimizers Vs. Bi-LSTM Performance  

  During the training of the CNN Bi-LSTM model, the selection of an optimizer is 

very important because the helps the ML /DL model to get results faster. Based on the 

algorithms used by the optimizer, TensorFlow supports nine optimizer classes, including 

Adadelta, Adagrad, Adam, Adamax, Ftrl, Nadam, RMSprop, SGD, and gradient descent. 

During the optimizer Vs. Accuracy calculation experiment, the relu activation function, 

and a 20% dropout rate are used on the model and experimented with seven optimizers, 

including Nadam, Adam, RMSprop, Adamax, SGD, Adagrad, and Ftrl to find the best 

optimizer for our model. The performance metrics are recorded in Table 4.1. The results 

found that the Nadam optimizer is the winning optimizer for NSL-KDD, and adam 

optimizer provides the highest accuracy for the UNSW-NB15 dataset. Two optimizers 

perform differently for both NIDS datasets; even the same model architecture is used.  

TABLE 4. 1  
OPTIMIZERS VS. PERFORMANCE ON CNN-BLSM 

 
Epochs = 10, Batch Size = 256 

SN Optimizer ACC_NSL F1_NSL ACC_UN F1_UN 
1 Nadam 98.13 98.26 99.11 99.34 
2 Adam 98.02 98.16 99.15 99.38 
3 RMSprop 97.87 98.01 97.93 98.46 
4 Adamax 97.65 97.78 95.33 96.51 
5 SGD 97.74 97.91 99.14 99.37 
6 Adagrad 96.98 97.21 94.043 95.62 
7 Ftrl 53.47 69.68 0.8099 80.99 
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B. Experiment-2 Learning Rate Vs. Performance 

  The same model architecture is used to find the learning rate for better model 

performance where the optimizers are selected from the previous experiment [4A]. The 

learning rate determines how the neural network model weights are updated. The learning 

rates vary to tune the model accuracy, keeping the other hyperparameters unchanged during 

this experiment. The learning rate Vs. CNN Bi-LSTM model performance is tabulated in 

Table 4.2. The model provides the highest performance at a learning rate of 0.01 on 

UNSW-NB15 and a learning rate of 0.0002 on the NSL-KDD dataset. The same learning 

rate provides different model performances. 

 
TABLE 4. 2  

LEARNING RATE VS. PERFORMANCE ON CNN-BLSTM 
 

epochs = 10, batch Size = 256, KDD (Nadam), UNSW-NB15 (adam) 
SN LR ACC_NSL F1_NSL ACC_UN F1_UN 
1 0.01 97.49 97.67 99.67 99.76 
2 0.001 98.16 98.29 99.54 99.66 
3 0.0001 98.06 98.2 95.81 96.85 
4 0.0002 98.18 98.3 97.9 98.44 
5 0.0003 98.14 98.27 98.44 98.86 
6 0.0004 97.97 98.11 99.13 99.35 
7 0.0005 98.11 98.25 99.09 99.32 

  
C. Experiment-3 Drop out Vs. Performance  

  The dropout rate refers to dropping the neurons during the training model to prevent 

overfitting. The CNN Bi-LSTM model was trained and tested using epochs of 10 batch 

size 256 for both datasets. Different values of dropout rate are chosen to study the model 

performance. The model performs better at a dropout rate of 30% on UNSW-NB15, and a 

60% dropout rate performs better on the NSL-KDD dataset. The hyperparameter values, 

dropout rates, and performance are tabulated in Table 4.3. The experiment results show the 

different drop rates for different datasets even though both data sets are similar. 
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TABLE 4. 3  
DROP OUT VS. PERFORMANCE ON CNN-BLSTM 

 
epochs = 10, batch Size = 256, KDD (Nadam), UNSW-NB15 (adam) 
SN DropOut ACC_NSL F1_NSL ACC_UN F1_UN 
1 0.1 98.1 98.24 97.44 98.15 
2 0.2 98.02 98.16 98.98 99.25 
3 0.3 98.16 98.29 99.87 99.9 
4 0.4 98.04 98.17 99.27 99.47 
5 0.5 97.93 98.09 99.47 99.61 
6 0.6 98.21 98.33 99.81 99.86 
7 0.7 98.01 98.15 99.58 99.69 
8 0.8 98.04 98.18 98.57 98.94 

 
D. Experiment-4 Batch Size Vs. Performance  

  Batch size is the number of samples utilized in a single iteration. The smaller batch 

size introduces small amounts of data samples and takes longer to train the CNN Bi-LSTM 

model compared to the larger batch size. The batch size is varied, keeping the other 

hyperparameters fixed, such as epochs of 5, optimizer’s learning rate, and dropout rate 

values assigned on the model to the respective dataset based on the previous experiment’s 

(Experiment 1-3) finding.  

TABLE 4. 4  
BATCH SIZE VS. PERFORMANCE ON CNN-BLSTM 

 
epochs = 5, KDD (Nadam), UNSW-NB15(adam) 

SN batch_size ACC_NSL F1_NSL ACC_UN F1_UN 
1 32 97.89 98.04 99.40 99.55 
2 64 97.95 98.10 99.35 99.52 
3 128 98.06 98.20 99.33 99.50 
4 256 97.64 97.79 96.36 97.26 
5 512 97.92 98.08 96.90 97.70 

 

This experimental result in Table 4.4 shows that the combination of hyperparameters 

in the neural network provides a different performance. During this experiment, the CNN 

Bi-LSTM model performed better when batch size is 128 for NSL-KDD and 32 for UNSW-

NB15 datasets with epochs of 5.  
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E. Experiment-5 Epochs Vs. Performance  

  The number of times the learning algorithm will go over the complete training 

dataset is determined by the hyperparameter known as the epoch, which can be any integer 

value that lies between 1 to infinity. The model takes a long time to train when we choose 

smaller epoch values and vice versa. The CNN Bi-LSTM model performance for different 

values of epochs and assigned the other hyperparameters values found from previous 

experiments are recorded in Table 4.5.   

TABLE 4. 5  
EPOCHS VS. PERFORMANCE ON CNN-LSTM 

 
Batch size = 256, KDD (Nadam) 

SN Epochs ACC_NSL F1_NSL 
1 2 95.48 95.94 
2 10 98.13 98.26 
3 25 98.21 98.33 
4 50 98.20 98.33 
5 75 98.27 98.39 
6 100 98.26 98.39 

 

V. CONCLUSION  

  The literature review shows that the NSL-KDD and UNSW-NB15 have an average 

model accuracy of 99%, but the smaller attack class such as U2R and R2L, detection is very 

low. The enemy is the enemy, and every attack is responsible for destroying network 

machines equally. Hence compare the result with the existing result of 91.12% [51], and 

90.83% [49] accuracy for NSL-KDD and 99.70% [61], 82.08% [73] 82.08% for the UNSW-

NB15 dataset. The experiment improves accuracy, which is 98.27% on NSL-KDD and 

99.87% on UNSW-NB15 binary dataset. The values of CNN Bi-LSTM model 

hyperparameters, including optimizer, epochs, batch size, the learning rate, and dropout for 
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the CNN Bi-LSTM neuron architecture, are investigated for the highest detecting accuracy 

for binary NSL-KDD and UNSW-NB15 dataset.
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CHAPTER 5. OPTIMIZING THE PERFORMANCE OF NETWORK ANOMALY 

DETECTION USING BIDIRECTIONAL LONG SHORT-TERM MEMORY (BI-

LSTM) AND OVER-SAMPLING FOR IMBALANCE NETWORK TRAFFIC 

DATA 

Abstract- Cybercriminal exploits integrity, confidentiality, and availability of 

information resources. Cyberattacks are typically invisible to the naked eye, even though 

they target a wide range of digital assets, such as internet-connected smart devices, 

computers, and networking devices. Implementing network anomaly detection proves to 

be an effective method for identifying these malicious activities.  The traditional anomaly 

detection model cannot detect zero-day attacks. Hence, the implementation of the artificial 

intelligence method overcomes those problems. A specialized model, known as a recurrent 

neural network (RNN), is specifically crafted to identify and utilize sequential data patterns 

to forecast upcoming scenarios. The random selection of hyperparameters does not provide 

an efficient result for the selected dataset.  

We examined seven distinct optimizers: Nadam, Adam, RMSprop, Adamax, SGD, 

Adagrad, and Ftrl, with variations in values of batch size, epochs, and the data split ratio. 

Our goal is to optimize the performance of the bidirectional long short-term memory (Bi-

LSTM) anomaly detection model. This optimization resulted in an exceptional network 

anomaly detection accuracy of 98.52% on the binary NSL-KDD dataset. Sampling 

techniques deal with the data imbalance problem. Random under-sampling, which 

involved removing data from the majority classes to create a smaller dataset, was less 

efficient for deep learning models. In contrast, the Synthetic Minority Oversampling 

Technique (SMOTE) successfully generated random data related to the minority class, 
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resulting in a balanced NSL-KDD multiclass dataset with 99.83% Bi-LSTM model 

detection accuracy. The analysis discovered that our Bidirectional LSTM anomaly 

detection model outperformed existing anomaly detection models compared to the 

performance metrics, including precision, f1-score, and accuracy. 

Keywords—Bidirectional-LSTM, data imbalance, deep learning, machine learning, 

network anomaly detection, NSL-KDD, Random Under Sampling (RUS), Random Over 

Sampling (ROS), sampling, SMOTE. 

I. INTRODUCTION 

 Information technology has revolutionized how essential data is conveyed, utilizing 

bits to transfer a wide range of information from one point to another. This transmitted data 

can encompass diverse forms, such as voice, images, or data, including sensitive details like 

banking information, personal records, and network traffic. Numerous tools and techniques 

are available to identify and thwart unauthorized access.  

  Anomaly is an unusual pattern present in the dataset. Some techniques or methods 

are required to detect those anomalies from the dataset. The anomaly is also called the 

outliers during the study of anomaly detection. Anomaly detection is used in large fields to 

sense abnormal patterns, such as in business, network attack detection, monitoring health 

conditions, detecting fraud credit card transactions, and detecting malicious activities in 

mission-critical systems. Detecting anomalies is critical in cyber security for achieving solid 

safeguards against cyber criminals. Fig. 5.1. provides brief information about the taxonomy 

of anomaly detection methods [48]. 

 The security of information resources is ensured when the three fundamental 

principles of computer security—Confidentiality, Integrity, and Availability (CIA)—are 
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appropriately obeyed [47]. An intrusion detection system is a mechanism used to monitor 

and scrutinize computer or network-related activities to identify potential threats by 

assessing the frequency at which computer security guidelines are violated based on 

confidentiality, integrity, and availability.  Intrusion is any unwelcome and illegal activity 

within an organization's internet-connected end terminal or network-connected devices. 

These illegal activities aim to gain entry to a business computer or network device. An 

alternative term for intrusion is a malicious activity that disrupts the fundamental principles 

of information resource protection known as the CIA triad. An intrusion detection system 

examines computer network and host activities, pinpointing dubious traffic and 

abnormalities. Intrusion detection and prevention systems scrutinize traffic from both 

internal and external sources to identify potentially malicious actions. 

 

Fig. 5.1. Taxonomy of anomaly detection. [48]. 
 

 Detection of misuse and/or intrusion involves identifying potentially suspicious 

activities within a network or on hosts. Misuse detection focuses on recognizing deviations 
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from established rules by individuals with valid system access rather than actual intrusions. 

For instance, when an employee uses the Internet for personal purposes in violation of 

company policy, it constitutes a misuse intrusion. In contrast, intrusion detection is designed 

to identify unauthorized individuals, such as external hackers or government spies, who lack 

authorized system access. The intrusion detection system primarily focuses on spotting 

ongoing intrusions within the system or network but does not proactively prevent malicious 

activities.  

 There are two main types of methods for detecting intrusions: signature-based 

systems, known as SIDS, and anomaly-based systems, referred to as AIDS. Anomaly 

detection systems are further categorized into network-related and host-related intrusion 

detection systems. The identification of normal or anomalous data in anomaly detection 

techniques is achieved through the utilization of labels. The collected data determines the 

types of anomaly detection whether host-based or network-based anomaly detection.  

 A SIDS identifies suspicious activities through pattern matching with known 

external attack patterns, which fall into two categories: misuse detection and knowledge-

based detection. This anomaly detection model compares the recent signature with a 

previously stored signature in its database. When a match occurs between these signatures, 

the IDS signals the presence of malicious activities within the network. Regular updates to 

the signature database are crucial to effectively detect malicious activities in a network.  

 However, it is important to note that this type of detection system cannot identify 

zero-day attacks, as these novel attack types may not yet be contained in the signature 

archive. This anomaly detection model delivers optimal detection outcomes for recognized 

signatures associated with malicious activities. This type of anomaly detection model is 
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known for its straightforward configuration and comprehensibility. Widely adopted 

intrusion detection systems include Snort and NetSTAT. In the traditional setup, the SIDS 

examines network packets and matches them against stored signatures. However, newly 

introduced attacks not yet included in the signature database can reduce intrusion detection 

accuracy. To address these limitations, the anomaly-based anomaly detection model offers 

enhancements and boosts the overall anomaly detection rate. The anomaly-based intrusion 

detection approach is designed to identify malicious and unreliable network exploitation 

activities within the corporation.  

 AIDS effectively addresses the limitations included in SIDS approaches. Likewise, 

the anomaly-based intrusion model leverages statistical-based, machine learning, and 

knowledge-based techniques to model the typical behaviors of network traffic. An 

"anomaly" refers to any behavior that deviates from these established norms, and such 

traffic anomalies can harm computers and network devices. Anomaly-based detection can 

occasionally yield false results due to shifts in user behavior. AIDS can generate errors even 

when legitimate users alter their usual habits. This approach comprises two key stages: the 

testing and the training stages. In the training stage, the model is trained using normal traffic 

data to establish a baseline or "normal profile." In the testing stage, previously unseen data 

is employed to evaluate the model's performance. The primary benefit of this methodology 

is its ability to detect zero-day attacks. 

 Three distinct anomaly detection methods include unsupervised, semi-supervised, 

and supervised anomaly detection methods based on the target class. AIDS addresses the 

limitations of SIDS by employing knowledge-based methods, machine learning, and 
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statistical-based to model normal behaviors. Fig 5.1 outlines the various approaches to 

anomaly detection [48]. 

 Deep learning has the capability to generate improved representations, enhancing 

the development of effective anomaly detection models. In contrast, conventional machine 

learning algorithms for network-related abnormality detection are more appropriate for 

smaller datasets and often rely on performance influenced by the implementation of feature 

engineering. The model benchmark indicators of conventional anomaly detection models 

are significantly influenced by the split ratio. While these conventional ML methods are 

uncomplicated and require minimal resources, they face limitations when dealing with 

extensive datasets and large feature sets, making them unsuitable for tasks such as machine 

vision, image translation, natural language processing, and similar applications.  

 The convolutional neural network is primarily employed for computer vision using 

image datasets, with the lower layers' neurons responsible for feature reduction. These lower 

layers typically recognize image corners, boundaries, and intensity called small-scale 

features. As the information progresses to higher layers, the network integrates these lower-

level features to create forms, basic shapes, and partial objects. The final layer of the 

network amalgamates these lower-level features to generate the output. LSTM operates 

distinctively from a CNN as it is commonly applied for processing and predicting outcomes 

based on sequential data. Unlike CNNs, Recurrent Neural Networks (RNNs), including 

LSTMs, were specifically designed to preserve long-range information within a sequence, 

preventing the loss of important details in lengthy sequences. The Bidirectional LSTM 

(BiLSTM) enhances this by introducing an additional LSTM layer that reverses the flow of 

information, effectively addressing issues such as vanishing gradients.  
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 The deep learning methodology tackles challenges inherent in conventional machine 

learning, specifically its ability to handle extensive datasets and numerous features. The 

efficacy of anomaly detection algorithms based on deep learning depends on various factors, 

including the choice of hidden layers, determination of activation function, neurons, batch 

size, and epochs during both model training and testing. Strategic decisions regarding these 

hyperparameters, along with considerations for the ratio of the train to test data and the 

design of deep neural networks, are essential for improving the precision of network 

anomaly detection systems.  

 In addition to fine-tuning hyperparameters, handling imbalanced data is vital, and 

creating a balanced dataset using various sampling methods contributes to improved 

anomaly detection. Under-sampling reduces data size, posing challenges for deep learning 

models. At the same time, over-sampling methods generate duplicate random data, proving 

more effective for deep learning models to improve the anomaly detection performance in 

network-based anomaly detection models. 

II. LITERATURE REVIEW 

 The continuous generation of data generates big data and poses challenges for 

traditional machine learning algorithms, requiring extensive feature engineering efforts to 

perform adequately. Deep learning significantly enhances detection performance in such 

scenarios. However, the effectiveness of network anomaly detection varies on numerous 

factors, with the nature of the dataset (whether balanced or unbalanced), the hyperparameter 

of the neural network, the amount of model train and test data, and the architecture of the 

neural network in the deep learning model. These elements collectively play a crucial role 

in successfully identifying anomalies in the network. 
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 In their study, the researchers utilized the Bidirectional LSTM to alleviate the 

considerable requirements for feature reduction inherent in conventional machine learning-

based anomaly detection approaches [49]. Additionally, they implemented data 

augmentation in data preprocessing of minor attacks user to root (U2R) and root to local 

(R2L) to create a well-adjusted NSL-KDD. This methodology resulted in higher anomaly 

detection accuracy of 90.73% and f1-scores of 89.65%. 

 In their study presented an algorithm for network intrusion detection that integrated 

a deep hierarchical network with hybrid sampling, incorporating SMOTE to create a 

balanced data set [50]. The SMOTE techniques used to balance the dataset using 

oversampling method. They utilized a hybrid approach that combined CNN and Bi-LSTM 

for anomaly detection accuracy of 83.58% on NSL-KDD and 77.16% on UNSW-NB15. 

 In their study presented a method utilizing bidirectional generative adversarial 

networks (Bi-GAN) on the CIC-DDoS2019 and NSL-KDD datasets [51].  The Bi-GAN 

model exhibited strong performance, particularly on the imbalanced NSL-KDD, achieving 

an f1-score of 92.68% and an accuracy of 91.12%. The Bi-GAN approach was employed to 

enhance the performance of the NSL-KDD imbalance dataset. 

  In their study, implemented a new method involving auxiliary classifier generative 

adversarial network (ACGAN) and ACGAN with SVM to tackle data unevenness concerns 

by leveraging GAN to produce synthetic attack network traffic for intrusion detection 

systems [52]. These artificially generated attacks were merged with the existing data, 

resulting in an extended dataset. Research carried out on the RAWDATA, CICIDS2017, 

UNSW-NB15, and NSL-KDD showed that among the support vector machine, decision 
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tree, and random forest models, the decision tree achieved a superior f1-score of 92% on 

the balanced NSL-KDD dataset.  

 In [53], researchers utilized an assorted ensemble-aided approach to binary and 

multi-class network anomaly detection models to tackle the challenge of uneven traffic data 

in network traffic-related datasets, including NSL-KDD, UNSW-NB15, and KDD99 

datasets. This approach achieved a true positive rate and area under the ROC curve of 94.5% 

and 96.2% on the NSL-KDD, respectively.  

 According to their finding, the authors [54] concluded that the efficiency of the 

anomaly detection algorithm is improved when the number of output labels is reduced. This 

observation was explored across different conventional machine learning algorithms, 

including Naïve Bayes, J48, random forest, bayesinNet, bagging, and bayesinNet. The 

evaluation used three network datasets: KDD99, CICIDS2017_Thrusday, and UNSW-

NB15. 

 In [55], the researchers observed the effectiveness of a recurrent neural network-

based intrusion detection system (RNN-IDS) in multi-class and binary-class scenarios. 

Performance on the NSL-KDD was observed, which is affected by the number of neurons 

and different learning rates. Experimental outcomes illustrated that RNN-IDS is adept at 

constructing a classification approach with high accuracy, outperforming traditional 

machine learning classification methods, including random forest, artificial neural network, 

J48, and support vector machine in both multiclass and binary network intrusion-related 

datasets. In their publication [56], presented a network anomaly detection technique 

utilizing a convolutional autoencoder and attained a model accuracy of 96.87% on the NSL-
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KDD. The convolutional autoencoder methodology was utilized to simplify and determine 

the most significant features of the network anomaly dataset. 

  In [57], the authors investigated the usefulness of several autoencoders in detecting 

network anomalies. They compared four different types of autoencoders, including sparse 

autoencoders, undercomplete deep autoencoders, and denoising autoencoders, using the 

NSL-KDD. Sparse deep denoising autoencoder yielded a model accuracy of 89.34% 

compared with other models. 

 In [58], the authors presented a model centered around a 5-layer autoencoder (AE) 

tailored for network abnormality detection. The fine-tuned model designs demonstrated 

proficiency in attribute learning and the dimension of data reduction, resulting in improved 

performance metrics, including model accuracy and f1-score. The model produces the 

highest accuracy and f1-score of 90.61% and 92.26% on the NSL-KDD, respectively. The 

researchers employed the reconstruction error to determine whether the network traffic is 

regular or attacked.  

 In [59], [76], the researchers proposed a network anomaly detection approach with 

a combination of convolutional neural networks and bidirectional LSTM applied to the 

KDD99. They explored the influence of the number of nodes, the number of hidden layers 

and memory elements on it, and the number of epochs to improve their anomaly detection 

model accuracy. The performance metrics of different models, such as J48, k-nearest 

neighbors, NB, deep forest, RF, and convolutional neural network combined with 

bidirectional LSTM, were evaluated. The convolutional neural network bidirectional LSTM 

exhibited the ultimate model detection accuracy of 95.40%.  
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 In [60], the researchers assessed both single-layer and four-layer LSTM models for 

weather forecasting, utilizing a weather-related dataset from Hang Nadim Indonesia 

Airport. The top model validation accuracy of 80.60%. The four hidden layers comprise 50, 

90, 100, and 200 memory elements. The split ratio for testing and training dataset was used 

at 0.30, and the models underwent training for 500 epochs.  

 The researchers in [61] adopted a deep learning approach utilizing bidirectional 

LSTM, implemented on the UNSW-NB15 and KDDCUP99, and achieved notable 

outcomes with a 99% accuracy rate for both datasets. Numerous current models encounter 

difficulties in effectively detecting uncommon attack traffic types, notably user-to-root and 

remote-to-local traffic, which often demonstrate lower detection accuracy than other types 

of attacks. The researchers in [62] deployed an intrusion detection system based on 

bidirectional LSTM to address the mentioned encounters on the NSL-KDD. This anomaly 

detection approach, utilizing Bi-LSTM, achieved a model detection accuracy of 94.26 % 

for binary NSL-KDD data. 

 The study in [63] delved into the influence of batch size and learning rates on the 

performance of CNN, focusing on image classification, particularly in the context of 

medical images. The results indicate that a larger batch size does not necessarily lead to 

higher accuracy. Moreover, the choice of learning rate and optimizer significantly affects 

performance. The authors found that reducing the learning rate and batch size, particularly 

during fine-tuning, enhances the network's training effectiveness. 

 Diverse strategies were implemented to address the challenge of data imbalance, 

encompassing techniques such as data augmentation discussed in [49], application of 

SMOTE detailed in [50], the use of GAN technology explored in [51], [52] the assistance 
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of Heterogeneous ensemble methods investigated in [53],  and the reduction of the target 

class by combining smaller classes into a new category, as discussed in [54]. A considerable 

number of research endeavors in the realm of deep learning for network anomaly detection 

have been scrutinized, incorporating methodologies like RNNIDS outlined in [55], CAE 

featured in [56], Autoencoder examined in [57], multilayer AE explored in [58], 

convolutional neural network combined with bidirectional LSTM hybrid methods presented 

in [59], [76]  and Bi-LSTM discussed in [61], [62]. 

 The researchers in [61] and [62] did not provide details on data pre-processing, the 

train-test split ratio, or adopting bidirectional LSTM hyper-parameters in their model study. 

Similarly, the researchers in [60] conducted weather forecasting using Bi-LSTM without 

specifying the hyperparameter values. In [55], there was no analysis information on epochs 

and the train test split ratio for the KDDTrain+ dataset. Most of the literature reviewed 

emphasizes enhancing model accuracy in conventional or deep learning algorithms. 

However, there is a notable lack of focus on deciding on hyper-parameters in deep learning 

approaches, determining the train test split ratio, and defining the architecture of neural 

networks. Some researchers do not clarify how these values are applied in their work. 

Consequently, our research aims to address these limitations in the network anomaly 

detection approaches by conducting experiments on NSL-KDD. 

III. CONTRIBUTIONS 

 The literature review examines a gap in the existing network intrusion detection 

systems during anomaly detection. The primary contribution of this research is to bridge 

this gap by proposing network anomaly detection models specifically tailored for 

imbalanced multiclass datasets. Arbitrarily selection of hyperparameters does not yield 
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efficient anomaly detection performance on the given dataset. This research investigates the 

impact of epochs, batch size, and optimizers on the efficacy of a bidirectional LSTM 

anomaly detection model using the multiclass NSL-KDD. 

  The choice of the amount of training data and testing data also influences the model's 

performance. A larger training dataset requires a longer training time, whereas a smaller 

dataset leads to quicker model training. The model's efficacy is contingent on the data size 

utilized for both training and testing, a factor we explored by adjusting the test train split 

ratio to enhance the performance of network traffic anomaly detection on the NSL-KDD. 

 More layers add complexity to the neural network-based model. The program 

execution time (program training and testing time) is large compared to small numbers of 

neural network layers and memory elements. The memory elements and layers in the neural 

network architecture influence the network anomaly detection performance. Investing 

layers and memory elements of neural networks improve the bidirectional LSTM on the 

NSL-KDD.  

 The careful choice of machine learning and deep learning algorithms significantly 

impacts the effectiveness of network anomaly detection. This study introduces the creation 

and deployment of a network traffic anomaly detection system utilizing a bidirectional 

LSTM-based recurrent neural network model. The developed model demonstrates a 

remarkable anomaly detection accuracy of 98.52% in the network, particularly for the 

binary NSL-KDD. 

 The primary challenge when dealing with real datasets is the presence of imbalanced 

data. Various approaches can be employed to address this issue. In the NIDS multiclass 

dataset, both under-sampling and over-sampling methods are applied to tackle data 
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imbalance. Notably, oversampling methods proved to be more effective, achieving the 

highest detection accuracy of 99.83% for the multiclass NSL-KDD datasets. 

 

IV. MODEL DESCRIPTION 

The proposed model consists of different steps, which are listed: 

 1. Data collection and modelling 

 2. Data cleaning and pre-processing  

 3. Bidirectional LSTM model preparation  

 4. Model training and testing 

 5. Evaluation model 

 6. Compare the model for decision  

Fig.  5.3 illustrates the schematic for the model based on Bidirectional LSTM. More 

elaborate explanations of the methods outlined above for the proposed model will be 

provided in the following sections.  

A. Data Collection and Modelling 

During this study, we employed the KDDTrain+ dataset, one of the subset data from 

the NSL-KDD. 

 

Fig. 5.2. DARPA, KDD99, and NSL-KDD dataset. 
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The NSL-KDD data is derived from the DARPA KDD99 data, as depicted in Fig. 

5.2, after the removal of noise and unwanted data. This includes the complete training data 

from the NSL-KDD set, including features named attack_type and difficulty. It 

encompasses 41 attributes and covers five separate attack categories: denial of service, 

normal, remote_to_local, probe, and user_to_root. NSL-KDD [64] represents an enhanced 

version of the KDD99 network traffic anomaly data, eliminating duplicate entries in the 

training data and ensuring the absence of repeated records in the test data. The KDDTrain+ 

dataset comprises 125,973 records and includes 41 attributes. Notably, this is balanced, with 

53.46% of total traffic being normal and 46.54% of total traffic entry being abnormal. We 

picked this data because it is balanced data between normal and abnormal traffic records 

within the subset, making it suitable for binary network anomaly detection data. Those 

numbers of attack class information from the NSL-KDD data were utilized to create the 

multiclass dataset for the experiment, detailed in the data pre-processing section. 

B. Data Cleaning and pre-processing 

 The KDDCup99 data is widely employed in experiments related to anomaly 

detection in computer network traffic. It consists of network-related traffic that transfers 

from the virtual network environment utilized for the third knowledge discovery and data 

mining tools competition. The KDD99 network traffic data is a revision of the 1998 

DARPA. The KDDCup99 dataset comprises three components: the "Whole" dataset, the 

"10% KDD," and the "Corrected KDD." The "Whole" dataset encompasses various attack 

traffic and one normal network traffic connection. This data involves two training data 

subsets: a full training data subset and a 10% training data subset.  The "Whole" dataset 
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consists of 4,898,431 individual records containing 41 attributes labeled as normal or an 

attack. 

  As indicated in the reference [64]  the KDD99 dataset encompasses 22 distinct attack 

traffic categorized into four classes: Denial of Service, Unauthorized Access to Local 

Privileges (U2R), Unauthorized Remote Machine Access (R2L), and Scan Network 

(Probe). The NSL-KDD data contains four sub-datasets, including KDDTest-21, 

KDDTest+, KDDTrain+_20Percent, and KDDTrain+. Notably, the KDDTrain+_20Percent 

and KDDTest-21 portions are sub-datasets derived from the KDDTest+ and KDDTrain+, 

respectively. 

 The KDDTrain+ dataset is designated as the training dataset, while the KDDTest+ 

dataset serves as the testing dataset for the machine learning model. KDDTest-21 is a subset 

of the test dataset that excludes the most challenging traffic records, with a score of 21, and 

KDDTrain+_20% is a subset of the training dataset, encompassing 20% of the entire 

training dataset. It is important to note that the traffic records found in KDDTest-21 and 

KDDTrain+_20% are already included in the test and train datasets, respectively. The NSL-

KDD dataset addresses the limitations found in the KDD'99 dataset. Unlike KDD'99, NSL-

KDD ensures the absence of redundant values in both the train and test datasets.  

 Notably, NSL-KDD is advantageous due to its smaller test and train sets, eliminating 

the need for random selection of a small data subset, thus making experiments more cost-

effective. Each record in the NSL-KDD dataset comprises 42 features, with 41 of them 

corresponding to the traffic input and the final label denoted as either "normal" or 

"abnormal." In the KDDTrain+ contains 125,973 total network traffic records and 41 

generated attributes, the data cleaning and pre-processing assigns a target label of ‘1’ for 
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normal traffic and ‘0’ for attack traffic records, transforming the multiclass network traffic 

data into a binary class.  

 Machine learning and deep learning algorithms work only for numeric values, so 

‘'protocol_type,' 'service,' and 'flag' are categorical attributes transformed into numeric 

values, either ‘0’ or ‘1’ using one hot encoding method called dummy one hot encoding. 

The dataset is then normalized using the standard scalar method. Correlation-based feature 

reduction is also implemented where those features with a correlation factor exceeding 0.5 

are preserved to reduce the features. Binary class data is employed in experiments A to E. 

In experiment F, the multiclass (class 5) version of the NSL-KDD dataset is utilized. Prior 

to training and testing the BI-LSTM model, a sampling method is applied to balance the 

unbalanced multiclass data. Further details on data preprocessing and model information 

can be found in the experimental section in the subsequent chapter. 

 

C. Train and test data preparation 

 The train data and test data splitting method separate the data randomly into two 

different subsets of the dataset. These two subsets of data contain the designed amount of 

data based on the selection. Since the pre-processed dataset represents just one portion of 

the data, we employ two separate datasets for implementing the machine learning 

Fig. 5. 3. Bidirectional LSTM model block diagram. 
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algorithms. Researchers typically have flexibility in determining the train-test split ratio, 

with common choices of 80% to 20%, 60% to 40%, 70% to 30%, and 75% to 25%. We 

conducted experiments to determine our model's most optimal splitting ratio and found that 

a 70% training and 30% testing dataset ratio yielded the best performance.  

D. Bidirectional LSTM model preparation 

  A recurrent neural network comprises feedback paths that analyze data sequences 

and patterns to make predictions. These loops enable data sharing among nodes, facilitating 

predictions based on accumulated information referred to as memory. RNNs have been 

effectively applied to address machine learning challenges, including tasks such as language 

preprocessing models, human voice/speech recognition, and image processing. 

  The LSTM-based model resolves the challenge of vanishing gradients encountered 

in RNNs. The LSTM architecture comprises a memory block and three units: input gates, 

output gates, and forget gates. These gates function similarly to read, write, and reset 

functions for the cells. Due to the presence of those three gates, LSTM memory cells can 

effectively store and retrieve data over prolonged times, mitigating the issue of vanishing 

gradients. 

  Conventional RNNs are limited in their capacity only to consider past context 

information. In contrast, Bidirectional RNNs overcome this constraint by analyzing data in 

forward (left to right) direction and backward (right to left) directions. This involves 

integrating two hidden layers, with the outcomes subsequently forwarded to a shared output 

layer. In a conventional LSTM neural network, the output signal/data is generated directly. 

In contrast, a bidirectional LSTM neural network incorporates both directions (forward and 

backward) layers at each stage, contributing the signal to the neural network activation layer. 
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This configuration captures data from both preceding and succeeding data, allowing the 

bidirectional LSTM neural network model to predict the target sequence of each element by 

considering finite sequences in the circumstances of both past and future elements. This is 

achieved by employing two consecutive LSTMs—one processing data from both directions. 

Traditional RNNs are constrained by their dependence solely on the previous perspective. 

Bidirectional LSTM defeats this limitation by examining data feed from both directions 

through two hidden neural network layers and then forwarding the results to a similar 

recurrent neural network output layer.  

 In a standard LSTM-based model, the model prediction is usually obtained directly 

via the given dataset. Conversely, the outputs from the forward layers and backward layers 

from each stage are combined and input into the activation layer in the bidirectional LSTM 

model. This resulting output encapsulates data from past and future data from the memory 

blocks in LSTM. The bidirectional LSTM predicts the labels or sequence from each element 

by leveraging finite sequences within the circumstances of preceding and following items. 

This process is accomplished through the sequential processing of two LSTMs—one data 

sequence from right to left direction and the same data sequence from left to right.  

 The selection of neural network architecture components, including input layers, 

hidden layers, output layers, layer sizes, activation functions, and dropout rates, is a critical 

step following data preprocessing. Hyperparameter tuning is an integral part of this research. 

Initially, hyperparameters are chosen randomly for experimentation, as discussed in more 

detail in the subsequent experimental sections. The data sampling approaches are 

implemented to deal with the data unevenness problem. Random oversampling and random 

under-sampling methods created the balanced multiclass dataset.  



103 
 

 
 

 To initiate the random selection of the Bidirectional LSTM architecture, the neural 

network comprises a single input layer with 64 neurons and a dropout rate of 20%. It features 

two hidden layers with 50 neurons each, both employing a 20% dropout rate. The output 

layers consist of a single dense layer, and the choice of activation function depends on the 

nature of the target class size, whether binary or multi-class. Once this model is defined, it 

is compiled using the appropriate loss function and optimizer in preparation for training.  

E. Evaluation Bi-LSTM model  

 Multiple experiments have been conducted to analyze the efficacy of the 

bidirectional LSTM model, revealing inconsistencies in the effectiveness of both machine 

learning and deep learning models. Consequently, a comprehensive analysis of the model's 

hyperparameters becomes imperative for performance improvement. The selection of the 

optimizer, batch size, epochs, and train test splitting ratio are guided by a comparison of 

anomaly detection accuracy and f1-score metrics for the bidirectional LSTM model. 

Ultimately, the bidirectional LSTM's performance metrics are juxtaposed with previous 

research findings to assess its efficacy. Additionally, two distinct sampling methods, namely 

random under-sampling and random oversampling, were experimented with on the NSL-

KDD and compared using the bidirectional LSTM model. 

F. Compare performance for decision-making. 

 After conducting model testing and evaluation, the decision-making process 

involves selecting the most suitable model pipeline from various alternatives. During this 

research, multiple sets of experiments are conducted to optimize the hyperparameters for 

the Bi-LSTM model, aiming to enhance its performance. These hyperparameters encompass 

factors such as optimizers, epoch count, batch size, neural network architecture, class size 
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selection, and methods for preprocessing raw data. This optimization process is driven by 

comparing performance metrics obtained from these diverse sets of experiments. 

Additionally, the performance metrics of the bidirectional LSTM anomaly detection models 

for NSL-KDD data are compared with published literature results. 

V. EXPERIMENTS AND RESULTS 

 Sets of experiments were conducted on a Windows 10 laptop with a 64-bit 

architecture, equipped with 16GB of random-access memory and an i7-1.99GHz processing 

unit. Python3.7.13, Keras2.6.0, and TensorFlow2.9.1 were utilized in this research. The 

investigation into train and test data split ratio, numbers of epochs, optimizers, and batch 

size for the bidirectional LSTM model was carried out across various experiments, as 

elaborated below. The intrusion detection system leverages machine and deep learning 

techniques for anomaly detection. Python is utilized to code network intrusion detection 

models, using packages such as NumPy, Pandas, Keras, imblearn, and Sci-kit-learn for 

developing machine learning models. Additionally, tools like WEKA, Java, C#, Visual 

C++, and MATLAB are commonly employed in intrusion detection. To ensure 

reproducibility, seed values are configured to obtain consistent results across multiple runs 

on the Jupyter Notebook platform. Subsequently, the experimental results are presented in 

the form of plots or tables, using the Microsoft Office suite for analysis.  

A. Experiment: Optimizers Vs. Bi-LSTM performance 

 During this experimentation, the bidirectional LSTM was applied to the NSL-KDD, 

the details of which are outlined in the preceding sections. An appropriate optimizer is 

essential for enhancing the network traffic anomaly detection model's training time and the 

overall efficacy of the model. The choice of optimizer holds significant importance as it 
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expedites results for the ML/DL model. The choice of the optimization algorithm made by 

a deep learning practitioner directly impacts both the training speed and the ultimate 

predictive performance of their model. TensorFlow is an open-source machine-learning 

library containing nine optimizers: Adam, Ftrl, Adagrad, Adamax, Adadelta, SGD, 

RMSProp, gradient descent, and Nadam. Among them, seven optimizers were 

experimented with to achieve the highest performance of the model. 

TABLE 5. 1  
OPTIMIZER VS. ACCURACY ON BI-LSTM 

 
 

 

 

 

 

 

 
 In this experimental task, the hyperparameter values were picked randomly, and the 

performance metrics and optimizers are outlined in Table 5.1. The structure of the 

bidirectional LSTM model contained 64 units, featuring two B-LSTM hidden layers having 

50 units in each, along with the dense output layer. Each layer within the BLSTM model 

utilized an activation function called relu and 20% drop-out rate of 20%. 

 Observing the above results (see Table 5.1 and Figure 5.4), it is determined that the 

Nadam optimizer is the victorious optimizer, with the winning performance metrics having 

an accuracy of 98.26%, precision of 97.76%, and f1-score of 98.37%.  Nadam enhances the 

Adam algorithm by integrating Nesterov momentum, resulting in an improved performance 

of the Adam optimizer.  

training data= 70%, Epochs = 50, batch size= 512 
SN Optimizer Accuracy % Precision % f1-score % 
1 Nadam 98.26 97.76 98.37 
2 Adam 98.24 97.66 98.35 
3 RMSprop 98.19 97.56 98.31 
4 Adamax 97.95 97.40 98.08 
5 SGD 91.19 88.67 92.02 
6 Adagrad 61.86 58.22 73.59 
7 Ftrl 53.14 53.14 69.40 



106 
 

 
 

B. Experiment: Train test split ratio Vs. performance 

 In this experiment, we investigated the impact of both the train test split ratio and 

model performances. The process of data splitting is crucial in data science, particularly 

when preparing machine learning models using the available data.  

 

 

 

 

 

 

 

 

 

 

 

 The train test split methodology is utilized to calculate the efficiency of machine 

learning algorithms in predicting results from data that were unseen during the model 

training phase. Once the model gets trained, the test dataset is applied, and no fixed 

percentage split ratio to divide into training and test sets from the given dataset. The splitting 

ratio is explored to enhance the model performance by utilizing the Nadam optimizer on 

binary NSL-KDD data. 

TABLE 5. 2  
TRAIN TEST SPLIT RATIO VS. PERFORMANCE ON BI-LSTM 

 
optimizer = Nadam, Epochs = 50, Batch_size = 512 

Testing data % accuracy % precision % f1-score % 
10 98.15 97.55 98.29 
20 98.21 97.57 98.33 
30 98.24 97.66 98.36 
40 98.18 97.52 98.30 
50 98.13 97.50 98.26 
60        98.10 97.52 98.24 
70 98.12 97.65 98.25 

Fig. 5.4. Optimizer vs. accuracy on Bi-LSTM plot. 
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80 97.82 97.39 97.97 
90 97.92 97.31 98.07 

 

 

Fig. 5.5. Test data size in % vs Bi-LSTM model performance. 
 

This experimental work presents the train test split ratio that achieves the optimal 

performance for our network traffic anomaly detection model on the NSL-KDD. The 

performances are tabulated in Table 5.2. and the plot is shown in Figure 5.5, where a 30% 

test split percentage results in the model’s highest accuracy of 98.48% and f1-score of 

98.57%.  

C. Experiment: Batch size Vs. performance 

 This experimental work presents the train test split ratio that achieves the optimal 

performance for our network traffic anomaly detection model on the NSL-KDD. The 

performances are tabulated in Table 5.2. and the plot is shown in Figure 5.5, where a 30% 

test split percentage results in the model’s highest accuracy of 98.48% and f1-score of 

98.57%. 
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TABLE 5. 3  
BATCH SIZE VS.BI-LSTM MODEL PERFORMANCE 

 
Optimizer = Nadam, epochs = 105, testing data split= 0.30 

batch size f1-score % accuracy % prgm exe time (sec) 
50 98.58 98.48 2127.235 

500 98.47 98.36 514.770 
350 98.51 98.4 527.153 
450 98.51 98.41 454.989 
250 98.46 98.35 616.466 
150 98.52 98.42 858.070 
300 98.55 98.45 553.444 
200 98.55 98.45 796.898 
400 98.48 98.38 460.884 
15 98.56 98.45 5671.738 

100 98.56 98.46 1228.779 
 

 A smaller batch size entails the introduction of limited data samples into the Bi-

LSTM anomaly detection model, necessitating a lengthier training period than a larger 

batch. The performance metrics and batch size are presented in Table 5.3. The experimented 

results indicate that when applying this model to the NSL-KDD, a batch of 50 produces 

optimal accuracy and s1-score. A larger batch of data through the model takes less training 

time but exhibits lower accuracy, highlighting a significant trade-off for this Bi-LSTM 

network traffic anomaly detection model. 

D. Experiment: Epochs Vs. performance 

  In machine learning, an epoch represents one complete pass through all the training 

data during a model's training. During each epoch, the model is exposed to the entire dataset, 

and the model's parameters (weights and biases) are adjusted based on the error or loss 

calculated from the model's predictions compared to the actual target values. 
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TABLE 5. 4  
EPOCHS VS BI-LSTM MODEL PERFORMANCE 

  
optimizer = Nadam, batch= 50, test data= 30%, train data = 70% 

epoch accuracy  f1-Score  prgm exe time (sec) 
175 98.48 98.58 3965.207 
100 98.48 98.58 1878.803 
125 98.48 98.58 2470.620 
5 97.9 98.03 127.058 
35 98.35 98.46 761.278 

205 98.52 98.62 4103.767 
50 98.38 98.48 942.129 
45 98.37 98.47 1002.092 
75 98.46 98.56 1465.514 

150 98.48 98.58 2934.249 
25 98.3 98.41 527.524 
15 98.13 98.25 322.529 

Accuracy and f1-score in %, prgm exe time: program train and testing time  
 
  In practice, the epoch is a hyperparameter set before the training begins. The choice 

of the epoch size depends on factors such as the model's complexity, the data size, and the 

model's convergence behavior during training. Selection of a small epoch may result in 

model underfitting, where the machine learning model hasn't learned the underlying patterns 

in the data. However, a large size epoch may lead the model to overfit, where the model 

starts memorizing the training data instead of generalizing well to unseen data. The epoch 

selection can be any integer value that lies between 1 to infinity. By tradition, the ML/ DL 

researcher selects large values of epochs. 

  This experiment aims to identify the optimal number of epochs that yield the highest 

accuracy for the Bi-LSTM model. Similar to the previous experiment, the Bi-LSTM 

hyperparameters were randomly selected. Longer epochs result in extended training times 

for the model. The random numbers of epoch values were chosen between 5 to 205, and the 

accuracy and f1-score were found to be highest at 205 epochs, which is shown in Table 5.4. 
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However, it is important to note that a larger epoch value increases the training time for the 

model. In this experiment, a batch of 205 sizes enhances the accuracy of the Bi-LSTM 

network traffic anomaly detection model, achieving a detection rate of network anomalies 

at 98.5%.  

E. Experiment: Model layers parameters Vs. accuracy 

  In prior experiments, 5.1 to 5.4, we investigated the impact of various 

hyperparameters, including the optimizer, number of epochs, batch size, and the train test 

data split ratio. The results revealed that the combination of the Nadam optimizer, 205 

epochs, a batch size of 50, and a train test split ratio of 70%: 30% delivers optimal 

performance after evaluating the model performance metrics. 

TABLE 5. 5  
BI-LSTM ARCHITECTURE VS ACCURACY 

 
optimizer = Nadam, batch_size = 50, test data= 30%, train data=70%  

Input layer  Hidden layer 1  Hidden layer 2 acc. % 
neuron act. fn neuron act. fn neuron act. fn  

8 relu 8 relu 8 relu 97.48 
4 sigmoid 4 sigmoid 4 sigmoid 97.05 
16 relu 16 relu 16 relu 97.93 
16 selu 16 selu 16 selu 97.97 
64 sigmoid 50 sigmoid 50 sigmoid 98.52 
49 sigmoid 128 sigmoid 128 sigmoid 98.18 
80 relu 64 relu 64 relu 98.48 
4 relu 4 relu 4 relu 97.55 

act.fn::activation function, acc:: model accuracy 
 

This study investigated different configurations of neurons and activation functions 

for the neural network of the Bi-LSTM model. The dense output layer is structured to 

provide probabilities for distinguishing between normal and abnormal classes, rendering the 

softmax activation function the most appropriate selection for the binary class dataset. 

  This experiment evaluated diverse configurations of Bi-LSTM neurons and 

activation functions for input and hidden layers. Several results from the conducted 
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experiment are outlined in Table 5.5. Based on the tabulated results, 64 neurons in the input 

layer and 50 neurons in each hidden layer of our model produce the ultimate accuracy of 

98.52% in the domain of network anomaly detection. 

F. Experiment: Sampling Vs. performance metrics for multiclass NSL-KDD dataset 

  Since these data represent a refined version of the KDD99 dataset, minimal data 

preprocessing is required. The downloaded train data (KDDTrain+) with the target class 

was initially separated from the training dataset to establish the class label. Among the 

remaining numerical features, three categorical attributes, ‘protocol_type,’ ‘service,’ and 

‘flag,’ are extracted. Dummy one-hot encoding methods convert categorical into numerical 

values, while the numerical features are normalized using standard scaling methods. 

Subsequently, both feature sets are merged into a unified data frame, resulting in the final 

data set.  

  The attack types on both KDD99 and NSL-KDD are presented in Table 5.6. The 

network attack traffic in these datasets is classified into ‘Denial of Service,’ ‘Probe,’ 

‘Remote to Local,’ and ‘User to Root’ [77]. A denial-of-service attack prevents legitimate 

users from accessing resources via the network, causing a disruption in the availability of 

those resources. On the other hand, a probe is a scanning attack aimed at identifying 

vulnerabilities in a system connected to the network. This probing attack targets weaknesses 

and facilitates potential compromise of the system. 
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TABLE 5. 6  
ATTACK TYPES AND TRAFFIC INFORMATION IN NSL-KDD 

 
Class Attack Types Data   
Probe Satan, MScan, Upsweep, Saint, Nmap, Portsweep 11656 

U2R Ps, Perl, Buffer_overflow, Sqlattack, Rootkit, 
Loadmodule, Xterm 

52 

Normal  67343 
R2L  Spy, Ftp_write,Guess_Password, Imap, Phf, 

Multihop, Warezmaster, Xlock, Warezclient, 
Xsnoop, Snmpguess, Snmpgetattack, Named, 
Httptunnel, Sendmail 

995 

DoS  Back, Worm, Apache2 Neptune, Smurf, Pod, 
Teardrop, Udpstorm, Processtable, Land 

45927 

Total traffic data 12593 
 

Likewise, the remote-to-local attack involves illegal access to a remote terminal. 

The user-to-root attack entails gaining privilege as a root user, with the root password 

obtained through various techniques such as password sniffing, brute-forcing, or social 

engineering. 

  Under-sampling is a straightforward approach and a method for addressing the class 

imbalance in datasets. This technique involves preserving all data within the minority class 

while reducing the volume of data in the majority class. It represents one of several tools 

available to data scientists for enhancing the accuracy of insights extracted from initially 

imbalanced datasets. In under-sampling, data samples from the majority class are randomly 

chosen and removed until a balanced distribution is achieved. This reduction in data volume 

can alleviate storage constraints and enhance processing efficiency. However, it is 

significant to note that this reduction may result in the loss of valuable information. 

  Conversely, oversampling is employed when the available data is insufficient in 

quantity. Its objective is to rectify dataset imbalance by augmenting the number of rare 

samples. Instead of discarding abundant samples, oversampling techniques generate new 

rare samples through replication, bootstrapping, or SMOTE (Synthetic Minority Over-
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Sampling Technique). SMOTE, which stands for synthetic minority over-sampling 

technique, is a specific form of oversampling that involves the synthetic generation of data 

points for the minority class. In this process, a random selection of k nearest neighbors is 

chosen to determine the appropriate oversampling level.  

 After preprocessing, the NSL-KDD KDDTrain+ multiclass data initially exhibits 

imbalanced class distributions. Various techniques can be employed to rectify this 

imbalance, including under-sampling, over-sampling, and hybrid sampling. The experiment 

utilized an automated sampling approach combining random under-sampling and SMOTE 

to restructure the data for all classes based on our implemented sampling method. Random 

oversampling consists of randomly choosing instances from the minority class, replacing 

them, and incorporating them into the training dataset. On the other hand, random under-

sampling entails randomly selecting instances from the majority class and removing them 

from the dataset. 

TABLE 5. 7  
BI-LSTM WITH RANDOM -UNDER-SAMPLING AND PERFORMANCE 

 
 BI-LSTM Model with Random Under-Sampling and Performance  

Epochs= 50, Batch_size= 512, Data = NSL-KDD Multiclass (5 class) _RUS 
SN Class Precision % Recall % F1-Score % 
1 DoS 100 100 100 
2 Probe 100 79.17 88.37 
3 R2L 88.89 80 84.21 
4 U2R 73.68 93.33 82.35 
5 Normal 86.67 100 92.86 
Average 91.29 89.74 89.81 
Accuracy    = 89.74 % 
Program exe time = 17.72 sec 

 
  The number of new datasets generated depends on each target class's original data 

size. Random under-sampling reduced the NSL-KDD data to 52 instances in each of the 

five classes by randomly eliminating data points. Conversely, SMOTE, an oversampling 
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technique, augmented the dataset by introducing additional data points. During this 

experiment, substantial data augmentation created well-balanced datasets, with each target 

class containing 67,343 instances. The balanced NSL-KDD data has been partitioned into 

training and testing subsets to facilitate the training and evaluation of the Bidirectional 

LSTM model. As determined in previous experiments, the train test data split a ratio of 

70%:30%. 

  The architecture of the Bi-LSTM neural network mirrors that used in prior 

experiments, with the input layer containing 64 elements and both hidden layer1 and hidden 

layer2 comprising 50 elements. A trade-off analysis was conducted to determine the optimal 

combination of epochs and batch size while considering the Bi-LSTM model's performance. 

TABLE 5. 8  
BI-LSTM WITH SMOTE TECHNIQUES AND PERFORMANCE 

 
BI-LSTM Model with SMOTE and Performance  

Epochs= 50, Batch_size= 512, Data = NSL-KDD Multiclass (5 class) _RUS 
SN Class Precision % Recall % F1-Score % 
1 DoS 99.99 99.98 99.98 
2 Probe 99.99 99.98 99.98 
3 R2L 99.99 99.18 99.59 
4 U2R 99.18 1 99.59 
5 Normal 1 99.99 1 
 Average 99.83 99.83 99.83 
Accuracy    = 99.83 % 
Program exe time = 770.52 sec 
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Fig. 5.6. Bi-LSTM performance vs over-sampling and under-sampling. 
 

In the hyperparameter tuning, we aimed to balance program execution time and 

model performance, as previously demonstrated. As a result, the model was trained for 50 

epochs using a batch size of 512 and the Nadam optimizer with a learning rate of 0.041, as 

detailed in the accompanying table.  

  The random under-sampling methods produce the NIDS multiclass accuracy of 

89.74%, average precision of 91.29 %, recall of 89.74%, and 89.91% f1-score referenced 

from Table 5.7. The program execution time is short as compared with oversampling. Table 

5.8. shows the performance of the Bi-LSTM with over-sampling methods called SMOTE 

where the default value of K, i.e., 5, is taken during this experiment. The nearest neighbors 

value K defines the neighborhood of samples to generate the synthetic samples. We listed 

the individual class performance as well as average class performance. Figure 5.6 shows the 

visualization plot to compare the under-sampling and over-sampling performance on the 

NSL-KDD multiclass dataset using the Bi-LSTM model. The over-sampling (SMOTE) for 
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the NSL-KDD multiclass dataset provides the 99.83% average precision, recall, and F1 

score. 

VI. CONCLUSION 

 The highest performance is achieved during network traffic anomaly detection using 

the bidirectional LSTM model. The combination of tuned different hyperparameters from 

the above experiment’s values, including epoch, optimizer, and batch size, outperformed 

the anomaly detection model. Determination of hyperparameters’ values for the Bi-LSTM 

anomaly detection model on the NSL-KDD dataset highly contributes to the domain of 

anomaly detection using machine learning and deep learning. Similarly, we can use no fixed 

split ratio values for the efficient anomaly detection model. This research work determines 

the split ratio to produce the highest performance on anomaly detection using the Bi-LSTM 

model on the NSL-KDD dataset. The combination of neural network architecture memory 

elements plays an important role in training and testing the model during network anomaly 

detection. Data imbalance is another main problem to deal with during network anomaly 

detection. The sampling techniques either delete the data entry randomly or generate the 

data entry randomly. The sampling technique balances the data in the multiclass dataset. 

During this research work, the implementation of the random up-sampling methods 

outperformed the model and produced the highest performance. 

  We compare our results with existing research [61] to prove that the model is 

outperformed on the KDD-NSL multiclass dataset. The previously completed research 

compared their model performance in paper at 99.70% with the other previously researched 

model’s performance, such as Artificial Neural Network (ANN) model at 95%, Decision 

Tree and Random Forest with 92.60%, Linear Regression, and Random Forest with 94%, 
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Random Forest, and Bayesian Network with 93.4 %, Deep Neural Network with 97% [61]. 

Our proposed model pipeline for the Bi-LSTM-based network anomaly detection model 

delivers a higher accuracy of 99.83% is greater than the obtained model performance in 

research work [61]. The values of bidirectional LSTM model hyperparameters, including 

epochs values, optimizer, batch size, train test slit ratio, and SMOTE sampling technique 

for the multilayer bidirectional LSTM neuron architecture (layers, activation function, and 

memory units) are examined to achieve the highest anomaly detection model performance. 

The results from these experiments consistently demonstrate that the bidirectional LSTM 

model, configured with the explored parameters, significantly enhances detection accuracy 

and f1-score. This model can be experimented with using different network intrusion 

datasets. Creating a new network intrusion dataset with the latest network attacks will be 

the extension of this task in the future. 
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CHAPTER 6. ENHANCING THE NETWORK ANOMALY DETECTION USING 

CNN-BIDIRECTIONAL LSTM HYBRID MODEL AND SAMPLING 

STRATEGIES FOR IMBALANCED NETWORK TRAFFIC DATA 

Abstract- The cybercriminal utilized the skills and freely available tools to breach 

the networks of internet-connected devices by exploiting confidentiality, integrity, and 

availability. Network anomaly detection is crucial for ensuring the security of information 

resources. Detecting abnormal network behavior poses challenges because of the extensive 

data, imbalanced attack class nature, and the abundance of features in the dataset. 

Conventional machine learning approaches need more efficiency in addressing these 

issues. Deep learning has demonstrated greater effectiveness in identifying network 

anomalies. Specifically, a recurrent neural network model is created to recognize the serial 

data patterns for prediction. We optimized the hybrid model, the convolutional neural 

network combined with Bidirectional Long-Short Term Memory (BLSTM), to examine 

optimizers (Adam, Nadam, Adamax, RMSprop, SGD, Adagrad, Ftrl), number of epochs, 

size of the batch, learning rate, and the Neural Network (NN) architecture. Examining these 

hyperparameters yielded the highest accuracy in anomaly detection, reaching 98.27% for 

the binary class NSL-KDD and 99.87% for the binary class UNSW-NB15. Furthermore, 

recognizing the inherent class imbalance in network-based anomaly detection datasets, we 

explore the sampling techniques to address this issue and improve the model's overall 

performance. The data imbalance problem for the multiclass network anomaly detection 

dataset is addressed by using the sampling technique during the data preprocessing, where 

the random over-sampling methods combined with the CNN-based BLSTM model 
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outperformed by producing the highest performance metrics, that is, detection accuracy for 

multiclass NSL-KDD and multiclass UNSW-NB15 of 99.83% and 99.99% respectively. 

Evaluation of performance, considering accuracy and F1-score, indicated that the proposed 

CNN BLSTM hybrid network-based anomaly detection outperformed other existing 

methods for network traffic anomaly detection. Hence, this research contributes valuable 

insights into selecting hyperparameters of deep learning techniques for anomaly detection 

in imbalanced network datasets, providing practical guidance on choosing appropriate 

hyperparameters and sampling strategies to enhance model robustness in real-world 

scenarios. 

Keywords—Convolutional neural network, CNN-BLSTM, data imbalance, network 

anomaly detection, NSL-KDD, random over sampling, random under sampling, UNSW-

NB15.  

I. INTRODUCTION 

 As technology undergoes rapid advancements, the transmission of information has 

transformed significantly, adopting various methods such as wired, wireless, or guided 

networks. This evolution in network technology is pivotal to people's daily activities. 

Whether it is communicating with others, accessing online resources, or sharing 

information, the efficiency and security of these interactions depend heavily on the 

underlying network infrastructure. A system attains security when it effectively maintains 

the three essential notions of computer information security: Availability, Integrity, and 

Confidentiality (CIA). In essence, information security involves safeguarding information 

from unauthorized entities and protecting against illegal access, use, disclosure, 
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reformation, recording, or destruction of data. Confidentiality guarantees that the 

information is accessible only to individuals or systems.  

 In information network technology, encryption methods and access controls prevent 

unauthorized users from gaining access to sensitive data during transmission. Information 

integrity guarantees that data remains unaltered during transmission. In the context of 

information network technology, this involves implementing mechanisms to detect and 

prevent unauthorized modifications to data, ensuring that the information received is the 

same as what was sent.  

 Availability ensures that information and resources are available and accessible 

when needed. In an information resources and security environment, availability involves 

designing robust and reliable systems that can withstand potential disruptions, whether they 

are due to technical failures or malicious attacks. The overarching goal of information 

security is to safeguard information from unauthorized access and malicious activities. This 

includes preventing unauthorized individuals or systems from gaining access to sensitive 

data, ensuring that information remains unchanged and reliable during transmission, and 

guaranteeing that information and resources are available when needed. 

 Measures to achieve information security encompass a range of strategies, including 

encryption to protect data confidentiality, checksums or digital signatures to ensure data 

integrity, and redundancy and fault-tolerant systems to enhance availability. Additionally, 

access controls, firewalls, and intrusion detection are commonly utilized to fortify the 

security posture of networked systems, mitigating the risks associated with information 

resources. 



121 
 

 
 

 A traditional network cannot be fully protected by relying solely on a firewall and 

antivirus software. These security measures identify predefined anomalous activities and 

establish the rule to prevent those unusual events by the cyber expert. In anomaly detection, 

outliers and anomalies are occasionally employed interchangeably. This approach finds 

extensive use across diverse domains, such as commercial, network attack detection, health 

systems monitoring, credit card fraud transaction detection, and identifying faults in 

mission-critical infrastructure systems. Anomaly detection is crucial in cybersecurity, 

providing robust protection against cyber adversaries. Ensuring safeguard network 

resources is essential to safeguard the organization from cyber threats. 

 Anomalies are categorized into point, contextual, and collective types based on the 

results generated by the detection method [48]. Point anomalies occur when a specific 

activity diverges from the typical rules or patterns. Contextual anomalies involve unusual 

patterns within a particular circumstance that consistently differ from numerous normal 

activities. Collective anomalies occur when a group of related instances exhibit anomalous 

behavior compared to the normal activity dataset. 

 Intrusion detection techniques can be broadly classed into two main types: 

Signature-based Intrusion Detection System (SIDS) and Anomaly-based Intrusion 

Detection System (AIDS). Anomaly detections, in contrast, are classified according to their 

origins, resulting in network-based and host-based intrusion/anomaly detection systems. 

Detecting anomalies in data is facilitated by employing labels to differentiate between 

normal and abnormal occurrences. There are three fundamental approaches to detecting 

anomalies: supervised, semi-unsupervised, and unsupervised methods. In the supervised 

approach, the system is trained on labeled data, distinguishing between normal and 
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anomalous instances. On the other hand, unsupervised methods detect anomalies without 

prior labeling, relying on deviations from established patterns. Semi-supervised techniques 

combine elements of both, using labeled and unlabeled data for training. AIDS overcomes 

the drawbacks of SIDS by utilizing ML, statistical-based, or knowledge-based methods to 

model normal behaviors. However, it is worth noting that anomaly-based detection may 

produce false results due to alterations in user habits. 

 Numerous traditional machine learning algorithms favor shallow learning 

methodologies, giving significant importance to feature engineering designed for smaller 

data. The feature engineering phase needs more processing time and domain expertise to 

create pertinent features and eliminate unrelated ones from anomaly detection algorithms. 

The effectiveness of anomaly detection is intricately tied to feature engineering and data 

preprocessing implementation. Traditional machine learning methods, characterized by 

simplicity, low resource consumption, and subpar performance in areas like vision, 

language processing, and image translations, underscore the limitations of these approaches. 

 CNN is predominantly employed for image signals, leveraging its architecture to 

effectively capture and analyze visual information. Individual neurons play a key role in 

reducing the dimensionality of the network's features in the lower layers of a CNN. These 

neurons are adept at identifying essential small-scale features within the images, including 

boundaries, corners, and variations in intensity. The CNN network links lower-level features 

to produce more complicated features in the upper layers, encompassing fundamental 

shapes, structures, and partial objects. The ultimate layer of the network amalgamates these 

lower features to generate the output results. 
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 The functioning of a long short-term memory differs from that of a CNN due to its 

specific design to safeguard long-range info within a sequential order. Unlike CNNs, 

LSTMs are crafted to remember and store information over extended sequences, avoiding 

the loss of crucial details. In the case of BLSTM, an additional LSTM layer is incorporated, 

introducing a reversal in the information flow direction. This architectural enhancement 

addresses challenges related to vanishing gradients, ensuring more effective training by 

considering information from both forward and backward directions in the sequence. 

 Data imbalance, including network anomaly detection, is a common challenge in 

ML applications. In network traffic anomaly detection, data imbalance refers to the unequal 

distribution of normal and anomalous instances in the dataset for training the detection 

model. Anomalies in network traffic are typically rare incidents compared to normal 

activities, leading to imbalanced data. 

 The deep learning approach addresses issues found in conventional machine 

learning. The effectiveness of the deep learning-based anomaly detection algorithm relies 

on factors such as the NN architecture, #hidden layers, activation functions, batch size, and 

the number of epochs utilized during DL model testing, training, and validation. The careful 

selection of these factors, including hyperparameters and the architecture of NN in deep 

learning, is crucial for enhancing the detection accuracy of network traffic anomaly 

detection. The essential selection of ML or DL models overcomes the class imbalance 

problem. The ensemble method, which combines more different individual models, requires 

longer training time and consumes more resources. The sampling method generates random 

data or deletes the random data based on the implemented sampling methods to create the 

balanced form of the final dataset, which is efficient in dealing with the imbalanced dataset. 
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II. LITERATURE REVIEW 

 The rapid increase of information and technology has led to widespread connectivity 

of numerous end terminals to the internet and networks. Those smart terminals contribute 

to generating substantial volumes of data, commonly referred to as big data. This huge flood 

of data is a valuable resource for analysis and insights. Machine learning and deep learning 

algorithms come into play to extract meaningful information from this vast data pool. The 

daily growth of big data presents difficulties for conventional machine learning algorithms, 

necessitating thorough feature extraction and discovery. DL substantially increases anomaly 

detection and model performance. Nevertheless, the dataset's attributes and features, 

hyperparameters in deep neural networks, and the structure of neural networks are pivotal 

elements that impact the efficacy of identifying anomalies in network-based IDS. 

 Conventional machine learning strongly relies on intricate and time-consuming 

feature engineering, often impractical for real-time applications. In the [65] study, the 

authors proposed an approach for payload classification utilizing CNN and RNN to detect 

attacks, achieving detection accuracies of 99.36% and 99.98% on the DARPA98 network 

data, respectively. CNN methods discern specific grouping patterns through convolution 

around input neighborhoods, while RNN works on sequences by calculating correlations 

between previous and current states. In another [66] study, class imbalance was handled 

utilizing a CNN with a Gated Recurrent Unit (GRU) hybrid model. To address the data class 

imbalance and feature redundancy, they used a hybrid sampling technique that integrates 

Pearson Correlation Analysis (PCA), repeated edited nearest neighbors, Random Forest 

(RF), and adaptive synthetic sampling. With the detection accuracies of 99.69%, 86.25%, 
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99.69%, and 99.65% on the NSL-KDD, UNSW_NB15, and CIC-IDS2017 datasets, 

respectively, their CNN-GRU model performed better.  

 The research authors [49] proposed using an Adaptive Synthetic Sampling 

(ADASYN) technique in a DL-based network intrusion detection system to overcome 

dataset imbalance. On the NSL-KDD network data, they used an autoencoder to reduce 

dimensionality. The CNN-BLSTM hybrid DL method obtained the greatest F1 score 

(89.65%) and accuracy (90.73%). To address problems resulting from data in class 

imbalance and heterogeneous data distribution across various information sources, the 

research [67] used convolutional neural networks with federal transfer learning. The 

UNSW-NB15 multiclass network dataset produced an average detection accuracy was 

86.85% for the model. 

 In [53], the researcher addressed data class imbalance on network datasets: NSL-

KDD, KDD99, and UNSW-NB15 datasets using heterogeneous ensemble-assisted ML 

methods for binary and multi-class network intrusion detection. Using the NSL-KDD 

dataset, the model showed a 96.2% AUC and a true positive rate (TPR) of 94.5%. The 

authors of [54] discovered that ML classifier performance increased with the decrease in 

target classes. Conventional ML approaches, such as Naïve Bayes, Random Forest, J48, 

Bagging, Adaboost, and BayesianNet, were used to investigate this idea on three network 

traffic-based intrusion datasets: KDD99, UNSW-NB15, and CIC-IDS2017_Thursday. 

 In a study [68], the authors suggested a method for achieving network intrusion 

classification with low computing cost, creating a group of target classes based on the nature 

of network traffic. They created cluster characteristics for each group using K-means on the 

KDD99 network dataset, resulting in a detection accuracy of 98.84%. However, the 
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intrusion detection model accuracy for user2root (U2R) is notably low at 21.92%, impacting 

overall performance. In [69], authors employed a hybrid method, combining CNN and 

LSTM, to enhance model classification accuracy, achieving 96.7% and 98.1% on CIC-

IDS2017 and NSL-KDD network data, respectively. 

 
In the study  [70], CNN and LSTM combined to create a hybrid model was proposed 

to enhance network intrusion detection model facilities for advanced metering infrastructure 

through cross-layer features combination. This method achieved the highest network 

intrusion detection accuracy of 99.79% on NSL-KDD and 99.95% on KDD Cup99 but with 

limited user2root (U2R) detection capabilities. Similarly, in [71],  authors employed a 

hybrid method of combining CNN and LSTM to improve model network intrusion detection 

by capturing additional network traffic data's spatial and temporal features. 

 In [72], the researchers implemented a hybrid technique based on the mean control 

of the CNN and BLSTM to address issues of conventional data pre-processing and 

imbalanced numerical distribution of class instances in the NSL-KDD, achieving the 

optimal detection accuracy of 99.10%. However, the accuracy for the minority traffic data 

class remains suboptimal. Using a different methodology, the authors [73] created a DL 

model that combined CNN and BLSTM to learn temporal and spatial characteristics. 

Fig. 6. 1. CNN Bidirectional LSTM model block diagram. 
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Accuracy levels on the binary class UNSW-NB15 were 93.84%, and binary NSL-KDD of 

99.30%.  

 Data was preprocessed using one-hot encoding and min-max normalization by 

authors in [74],  which achieved an accuracy of 96.3% on CNN and Bi-LSTM hybrid 

methods on the multiclass NSL-KDD dataset. Using preprocessed on given NSL-KDD data, 

researchers in [59] applied the hybrid model using CNN and BLSTM algorithm with a 

95.4% accuracy rate. A bidirectional LSTM model was used by the authors in their study 

[78] for the binary NSL-KDD dataset with the highest accuracy of 98.52%. Using a 

Bidirectional LSTM deep learning model, authors [61] got 99% accuracy on UNSW-NB15 

and KDDCUP-99, which is an exceptional achievement. But a lot of the models that are 

now in use need help effectively identifying uncommon (rare) attack types, especially 

user2root (U2R) and remote2local (R2L) attacks, which frequently have poorer detection 

accuracy as compared with other network attack types.  

 To overcome the difficulties found in the above literature review, authors in [62] 

presented a Bi-LSTM-based network intrusion detection system on the NSL-KDD dataset, 

which offered a binary classification accuracy of 94.26%. Furthermore, the authors 

proposed a Bi-directional GAN-based method [51] for the NSL-KDD and CIC-DDoS2019 

datasets. The bidirectional GAN model demonstrated strong performance with an f1 score 

and detection accuracy of 92.68% and 91.12%, respectively, on the unbalanced NSL-KDD 

dataset. 

 In the research study [78], [76], the Authors used the hyperparameters tuning to 

obtain the best model performance on network intrusion detection datasets, including NSL-

KDD and UNSW-NB15. In [79], the Authors implement the BLSTM model combined with 
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random over-sampling strategies, which produces a high anomaly detection accuracy of 

99.83% for multiclass imbalance network anomaly datasets NSL-KDD dataset. 

 The deep learning model discussed in [65] and [66] overcomes challenges traditional 

machine learning encounters in anomaly detection. While the CNN standalone model is 

unsuitable for sequential data preprocessing, and RNN requires complex data preprocessing, 

this model effectively addresses these issues. Data imbalance problems are tackled in [49], 

[67], [53], and [54]. Feature engineering emerges as a critical factor in enhancing the 

accuracy of both ML and DL models. Much research has been conducted on feature 

engineering, with studies focusing on attribute grouping found in [68], [69], [70], [71],  The 

BLSTM, which brings together two distinct LSTMs to allow input processing in both 

directions (from the past to the future and vice versa), is implemented in [72], [73], [74], 

[59], [61], [62], and [51] to improve the accuracy of network anomaly detection models. 

 Most of the researchers mentioned above concentrate on enhancing the detection 

accuracy of conventional or ML DL models and employ ensemble methods for feature 

engineering to address data imbalance. However, there needs to be more emphasis on 

exploring hyperparameter selection in DL-based models, determining the train-test split 

ratio, and defining the architecture of DNN. Some researchers need to elaborate on adopting 

these values in their studies. Subsequently, this research addressed these limitations in 

network traffic anomaly detection systems. We experimented using binary and multiclass 

versions of the UNSW-NB15 and NSL-KDD. Our focus includes investigating the 

performance comparison between random under-sampling and over-sampling to identify 

superior methods for imbalanced network data. 
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 The contributions of our research effort in the area of network anomaly detection 

and imbalanced datasets are listed as: 

a. Examining the impact of CNN and BLSTM neural network architecture and 

performance for binary/multi-class datasets, specifically NSL-KDD and UNSW-

NB15. 

b. Exploring the model performance of hyperparameters on binary and multi-class 

network datasets, namely UNSW-NB15 and NSL-KDD. 

c. Exploring the enhancement of CNN Bi-LSTM by varying memory elements and 

numbers of layers of NN. 

d. This study’s interest is developing and implementing a CNN Bi-LSTM hybrid 

model for network anomaly detection, achieving high accuracy rates of 98.27% on 

NSL-KDD binary data and 99.87% on UNSW-NB15 binary data. 

e. Exploring the network anomaly detection model based on CNN Bi-LSTM using 

UNSW-NB15. 

f. Investigating the random sampling methods for imbalanced data with detection 

accuracy greater than 99.83% for NSL-KDD multiclass data and 99.99% for the 

UNSW-NB15 multiclass dataset.  

The rest of this chapter unfolds: Section 3 delineates the system model and 

individual blocks comprising our CNN Bi-LSTM hybrid approach. Section 4 elucidates the 

experimental setup, experimental results, and discussion of the findings, and section 5 

encapsulates the conclusion of this research. 

III. NETWORK ANOMALY DETECTION MODEL DESCRIPTION 

The complete proposed model comprises the following steps: 



130 
 

 
 

 1. Network traffic-based data collection 

 2. Data pre-processing and cleaning 

 3. Training and testing data preparation 

 4. CNN BLSTM model preparation  

 5. Train and test model 

 6. Evaluation of CNN BLSTM model 

 7. Compare the model and decision-making 

The CNN BLSTM-based model's entire implementation schematic is displayed in 

Fig. 6.1. The ensuing sections offer a thorough explanation of the approaches mentioned 

previously. The components of CNN and BLSTM layers and the intricate architecture of 

neural networks are seen in Fig. 6.2.   

A. Network traffic-based data collection. 

 Numerous datasets are accessible for research in network intrusion detection 

systems. Examples include the KDD Cup99, Kyoto 2006+, NSL-KDD, CICIDS2017, 

UNSW-NB15, and several others, providing valuable resources for intrusion detection 

research. During this research, the UNSW-NB15 and NSL-KDD datasets are specifically 

employed. 

 NSL-KDD KDDTrain+ [64] originates from the DARPA KDD99 dataset, with the 

elimination of noise and undesired data. This dataset encompasses the complete NSL-KDD 

training set, including labels denoting attack types and difficulty levels. Comprising 41 

features, it delineates five different attack classes: “Normal,” “DoS,” “Probe,” “R2L,” and 

“U2R.”  
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 NSL-KDD represents a refined form of the KDD99 data, free from duplicate records 

in the training set and the test sets. Each entry in the dataset consists of 42 attributes, with 

41 of them related to the input traffic and the final label indicating whether the traffic is 

normal or abnormal (target). The KDDTrain+ dataset encompasses 125,973 data entries, 

while the KDDTest+ dataset consists of 22,544 data entries utilized in this research work. 

Table 6.1 documents the detailed information regarding the traffic and data information 

[77].  

TABLE 6. 1 DETAILS OF NSL-KDD DATA 
 

Traffic KDDTrain+ KDDTest+ 
R2L  995 2,885 
U2R  52 67 
DoS 45,927 7,460 

Normal 67,343 9,711 
Probe  11,656 2,421 
Total 125,973 22,544 

 

 

Similarly, The Australian Centre for Cyber Security (ACCS) cybersecurity research 

team constructed the UNSW-NB15 dataset [75], unlike KDD99 and NSL-KDD, which is a 

recently developed network intrusion dataset created by IXIA PerfectStrom tools within the 

Cyber Range Lab of the ACCS, this dataset consists of approximately 100GB of PCAP files 

capturing raw network traffic flows between two hosts either server to client or vice versa. 

The Argus and Bro_IDS tools and 12 other algorithms generated 49 features accompanied 

by class labels. Numerous records were utilized to construct the training and testing sets, 

where UNSW_NB15_training-set and UNSW_NB15_testing-set were used during this 

research work. The training set comprises 175,341 records, while the testing set comprises 

82,332 records, encompassing various attacks and normal network activity. Table 6.2 shows 

detailed information regarding the attacks and normal traffic. 
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TABLE 6. 2  
DETAILS OF UNSW-NB15 DATA 

 
Network Traffic testing-set.csv training-set.csv 
Exploits 11,132 33,393 
Generic 18,871 40,000 
Worms 44 130 
Fuzzers 6,062 18,184 
DoS 4,089 12,264 
Reconnaissance 3,496 10,491 
Analysis 677 2,000 
Backdoor 583 1,746 
Shellcode 378 1,133 
Normal 37,000 56,000 
Total 82,332 175,341 

 

The KDDTrain+ and KDDTest+ subsets of the NSL-KDD dataset were employed 

in our research experiment—likewise, experiments involved using training-set.csv and 

testing-set.csv from the UNSW-NB15 dataset.  

B. Data pre-processing and cleaning 

 NSL_KDD data is an improved version of the KDD99 dataset; minimum work is 

required for data preprocessing. The downloaded separate data files are used to test and train 

the model. The target class is initially isolated from the training and testing datasets to create 

the class labels. From the remaining attributes, numerical features and three categorical 

features—"protocol_type”, “service”, and “flag” are extracted. The categorical features 

undergo conversion into numerical values using dummy one-hot encoding techniques, while 

the numerical attributes are standardized using standard Scalar methods. Afterwards, both 

types of feature sets are combined into a unified data frame, yielding the final data sets for 

training and testing. One hot encoding generates one binary variable for each individual 

categorial value. The dummy encoding is similar to one hot encoding and converts the 

categorical values into numeric binary values. The dummy encoding represents N categories 

using N-1 binary variable. Let’s say we have three categories of traffic “protocol_type,” 
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“service,” and “flag” that are going to be dummy encoded as [1 0], [0 1], and [0 0], 

respectively. The standard scalar converts the numeric values so that the data standard 

deviations become 1.  

 Since there are different types of services present in the KDDTrain+ dataset and 

KDDTest+ dataset, the one hot encoding produces unequal numbers of features. The 

KDDTrain+ dataset contains 126 features, while the KDDTest+ includes a total of 120 

features after the implementation of one hot encoding. Those additional features 

“service_aol,” “service_harvest,” “service_http_2784”, “service_http_8001”, 

“service_red_i,” and “service_urh_i” are inserted into the KDDTest+ dataset after finding 

the exact location where those features reside into the KDDTrain+ dataset. We preserved 

the attacks_types and difficulty_level features because those features are highly relevant to 

the target class and increase the model's efficiency. 

 The UNSW-NB15 dataset was divided into two sets for training and testing 

purposes: UNSW_NB15_training-set and UNSW_NB15_testing-set. The 

UNSW_NB15_training-set comprises 175,341 entries, while the UNSW-NB15_testing-set 

contains 82,332 entries, encompassing various attacks and normal data. Initially, the 

features on this dataset are 49. First, those categorical attributes are changed into numeric 

using dummy one hot encoding. All numerical attributes are applied to the standard scalar 

normalization method. After preprocessing the numeric and categorical features, 192 

features for UNSW_NB15_testing-set data and 196 features for UNSW_NB15_training-set 

data were generated. Again, here we are taking two sets of data: one we can use for training 

and the other for testing or vice versa. The categorical values of data entries are not the same 
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for both datasets; hence, the one hot encoding produces unequal numbers of features on both 

data sets after preprocessing.  

 Some features generated from one hot encoding, such as state_ACC and state_CLO, 

are not included in the UNSW-NB15_training-set. Similarly, proto_icmp, proto_rtp, 

state_ECO, state_PAR, state_URN, and state_no features are not included on 

UNSW_NB15_testing-set. The empty features columns are added in the exact column 

location of those missing features on the respective dataset, generating 198 features plus 

one target class. 

C. Training and testing data preparation 

 In experiments concerning the binary NSL-KDD dataset, the training and testing 

datasets were created using a split ratio. The train-test split approach assesses the 

performance of machine learning algorithms in making predictions from data that wasn't 

part of the training set. We opted for a 70:30 split ratio to generate the train and test dataset. 

For the CNN BLSTM hybrid model, 70% of KDDTrain+ was used to train, and the 

remaining data was used to test the model for binary NSL-KDD data. 

 A similar split percentage was employed in the binary class UNSW-NB15, using 

the “UNSW_NB15_training-set.” In the case of multiclass experiments for UNSW-NB15 

and NSL-KDD, two distinct files were selected—one subset for training the CNN-BLSTM 

model and another for testing. Detailed information regarding this split is provided in the 

respective experimental sections.  

D. CNN BLSTM model 

  CNN is a forward DNN designed for image signal and classification. CNN 

comprises three primary layers: the convolutional, the pooling, and the fully connected 
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layers. The convolutional layer is the main component of CNN and uses the convolutional 

operation to grab the various features from the image signal. Then, the number of pooling 

layers extracts features, and a fully connected layer employs the output from the preceding 

layer for classification. Combining convolutional layers with pooling layers is responsible 

for feature extraction, while the final fully connected dense layer is utilized for classification 

purposes. CNN also involves various hyperparameters, including the number of filters, 

stride, zero-padding, pooling layers, and others. 

 An RNN is an artificial NN designed to manage sequential data by integrating 

feedback loops into its structure. Diverging from conventional feedforward neural networks 

that linearly handle input data, RNNs feature connections forming loops, enabling them to 

retain a memory of past inputs and utilize that information to impact the current output. The 

memory in an RNN serves as a short-term storage, allowing the network to retain 

information about past events and use it to make predictions about future events. This is 

especially valuable in applications where context and temporal relationships are essential. 

Machine learning issues, including speech recognition, language processing, and picture 

categorization, have been resolved with RNN. 

 Yet, traditional RNNs encounter challenges, notably needing help with learning 

long-term dependencies attributed to the vanishing or exploding gradient problem. 

Advanced RNN versions such as gated recurrent units (GRUs) and long short-term memory 

(LSTM) networks have been devised in response to these constraints. These architectures 

include mechanisms for selectively storing and retrieving information across extended 

sequences, enhancing their effectiveness in tasks that demand capturing long-term 

dependencies. 
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Fig. 6. 2. CNN BLSTM layer architecture. 
 
 LSTM handles the vanishing gradient in RNN. There is a memory block and three 

multiplicative units in LSTM. The input corresponds to the write operation, output to read 

and forget gates corresponds to the reset operations for cells that make up the LSTM 

architecture. By allowing LSTM memory cells to keep and access data for longer periods.  

Those multiplicative gates mitigate the vanishing gradient. 

 To process input in both directions—from the future to the past and from the past to 

the future—bidirectional RNN combines two independent RNNs. Both forward and 

backward LSTM networks make up the Bi-LSTM. The features extracted by the forward 

LSTM hidden layer point forward, whereas those extracted by the reverse LSTM hidden 

layer point backward. By taking finite sequences into account about earlier and later items, 

the bidirectional LSTM can anticipate or tag the sequence of each element. Two LSTMs 

processed in series—one from left to right and the other from right to left—produce this. 

The CNN and BLSTM hybrid models have several layers, each with a set of 

hyperparameters. Fig. 6.2. shows the CNN BLSTM's architectural layout.  

E. CNN BLSTM model training  

 The CNN BLSTM model's neural network architecture is prepared for training. The 

datasets consist of two sets: one for training and the other for testing, or vice versa. The split 
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percentage determines how much data is allocated for training and testing when a single 

data set is present. The selection of hyperparameters for model training is conducted through 

various experiments involving fine-tuning epochs and batch size to enhance detection 

efficiency. Within the training data, 20% is designated for validating the CNN Bi-LSTM 

model. 

F. Test the CNN BLSTM hybrid model and evaluation. 

 Deep learning (DL) and machine learning (ML) models offer performance 

consistency. After the CNN BLSTM model is built, the model is trained using the training 

dataset with specified hyperparameter values. These chosen hyperparameter values 

influence the training duration. Following training, the model can assess the unseen dataset 

to evaluate its performance. Hyperparameter selection lacks a predefined rule, allowing for 

random selection and subsequent fine-tuning through various experiments.  

 After the model testing, performance metrics are determined based on the type of 

ML model employed. In the case of the supervised machine learning model, ground truth 

values are utilized to measure the performance metrics on the test dataset. Various metrics, 

such as detection accuracy, precision, F1-Score, recall, program execution time, and Area 

under the ROC, are available to compare the model efficiency. Confusion metrics from 

Karas generate True Positive (TP), True Negative (TN), False Positive (FP), and False 

Negative (FN) values. In the context of a classification report, the terms "weighted" and 

"macro" refer to different strategies for computing metrics such as precision, recall, and F1-

score across multiple classes. Macro-averaging computes the metric for every class 

separately before averaging them. This means that each class is treated equally in the 

computation, regardless of size. Macro-averaging gives the same weight to each class, 
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which can be useful when all classes are considered equally. Weighted averaging, on the 

other hand, takes the average of the metrics, but it weights each class's contribution based 

on its proportion in the dataset. In other words, classes with more samples have a greater 

impact on the average. W weighted averaging is especially helpful when working with 

unbalanced datasets—where certain classes may have substantially more instances than 

others. 

 The classification report provides a thorough summary of the model's performance 

metrics for the specified training and testing data sets. Lastly, to assess the performance of 

our CNN BLSTM hybrid model, the performance metrics are compared with the findings 

of earlier research publications. 

G. COMPARE MODELS AND DECISION-MAKING. 

  Several sets of experiments were conducted to find the hyperparameter settings that 

yielded the best results. Following model testing and evaluation, choosing the best model 

pipeline from various options is part of the cognitive process of comparison and decision-

making. Throughout this study, several sets of experiments are carried out to determine 

values for various CNN Bi-LSTM model hyperparameters to enhance the model's 

performance. To create an effective Bi-LSTM pipeline, it is necessary to decide on the 

hyperparameters, which include optimizers, number of epochs, batch, NN design, class size, 

and techniques of raw data preprocessing. This is achieved by evaluating performance 

metrics across multiple sets of experiments. The performance metrics of the Bi-LSTM 

model are then juxtaposed with previously published results for the binary/numerous class 

UNSW-NB15 and NSL-KDD. The class imbalance problem in the multiclass version of 

both NSL-KDD and UNSW-NB15 datasets was exposed with sampling data during the 
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preprocessing stages. The sampling methods randomly deleted on down-sampling and 

randomly generated data samples in over-sampling. This resulted in the balanced form of 

datasets to compare the CNN Bi-LSTM model performance. 

IV. RESULTS AND DISCUSSION 

 To detect anomalies, intrusion detection uses a mix of DL and ML methods. The 

implementation of a network anomaly detection model is implied using Python script. 

Python has specialized packages for building machine learning models, including NumPy, 

Pandas, Keras, and Scikit-learn. Additionally, commonly used tools like  Java, C#, WEKA, 

Visual C++, and MATLAB play vital roles in network anomaly detection systems. On the 

Jupyter Notebook platform, seed values are fixed to guarantee consistency in outcomes over 

several runs. Plots and tables representing the results of experiments are analyzed using the 

Microsoft Office suite. Every experiment is run on a Windows machine with an i7 processor 

and 16GB of RAM. 

 Python and the packages it is linked with keep version information used in all 

experiments. For example, TensorFlow 2.9.1, Keras 2.6.0, and Python 3.7.12 are used. 

Hyperparameters will be determined, performance will be evaluated across class sizes, and 

the efficacy of various sampling approaches will be assessed about the CNN BLSTM model 

for the multi-class and binary-class UNSW-NB15 and NSL-KDD. Detailed explanations of 

these experiments are provided in subsequent sections.  

 The architecture shown in Fig. 6.2 consists of a single 16-unit convolution layer that 

uses batch normalization and max-pooling. BLSTM neural network layer 1 contains 50 

memory units; batch normalization, max-pooling, and reshaping come next. Bi-LSTM 

neural network layer 2 with 100 memory units and dropout is also available. The dense layer 
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consists of a sigmoid activation, and the final output is obtained. The detection accuracy of 

the model is evaluated through a series of tests involving the adjustment of optimizers, 

learning rate (LR), number of epochs, batch size, and dropout rate. As explained below, the 

UNSW-NB15 and NSL-KDD binary/multiclass network traffic datasets are used for these 

investigations. 

A. Experiment: Model performance Vs. Optimizers 

 In the context of ML and DL, an optimizer is an algorithm or method used to adjust 

the parameters of a model to minimize or maximize a certain objective function. The 

performance of an optimizer is crucial in training machine learning models because it 

determines how well the model learns from the data. Choosing the optimizer is essential 

during the training of the CNN BLSTM model, as it significantly contributes to expediting 

results for the machine learning/deep learning model.  

 TensorFlow offers nine optimizers (Ftrl, Nadam, Adam, Adadelta, Adagrad, 

gradient descent, Adamax, RMSprop, and Stochastic Gradient Descent (SGD)) based on 

the optimizer's methods. The choice of optimizer can significantly impact the training 

performance of an ML model. Optimizers may converge at different rates or achieve 

different final accuracies on a given task. An optimizer's performance may be influenced by 

the model's architecture, the dataset, and the hyperparameters employed. 

 It is common practice to experiment with several optimizers to determine which 

combination of optimizers and hyperparameters is optimum for a given task. Additionally, 

some optimizers may perform better on certain types of neural network architectures or for 

specific data types. In summary, the relationship between the optimizer and machine 

learning performance is crucial, and choosing the right optimizer is an important part of the 
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model training process. It often involves experimentation and tuning to find the optimal 

combination for a given task. 

 The model used in the experiment comparing Optimizers versus Accuracy has a 

20% dropout rate and the Relu activation function. To determine the best optimizer for our 

CNN-BLSTM model, seven optimizers, including Nadam, Ftrl, SGD, Adam, RMSprop, 

Adagrad, and Adamax, were tested. Based on the model performance metrics for UNSW-

NB15 and NSL-KDD binary data, which are shown in Table 6.3, it was found that the 

Nadam optimizer performed best for NSL-KDD. In contrast, the Adam optimizer produced 

the best accuracy for the UNSW-NB15 dataset. Interestingly, although both optimizers used 

the same model architecture, they performed differently for both Network Intrusion 

Detection System (NIDS) datasets. 

TABLE 6. 3  
CNN BI-LSTM  PERFORMANCE VS OPTIMIZER FOR BINARY CLASS NSL-KDD 

 
Number of epochs = 10, Batch = 256, NSL-KDD_C2 and UNSW-NB15_C2 
Optimizer ACC-NSL F1-NSL ACC-UN F1-UN 

Ftrl 53.47 69.68      80.99 80.99 
RMSprop 97.87 98.01      97.93 98.46 
Adamax 97.65 97.78     95.33 96.51 

Adam 98.02 98.16 99.15 99.38 
Adagrad 96.98 97.21 94.04 95.62 

SGD 97.74 97.91     99.14 99.37 
Nadam 98.13 98.26      99.11 99.34 

 ACC: Accuracy in %, F1: F1Score in %, NSL: KDD-NSL, UN: UNSW_NB 

 

TABLE 6. 4  
CNN BI-LSTM PERFORMANCE VS OPTIMIZER ON MULTICLASS NSL-KDD  

 
Model Performance Vs. Optimizer on NSL-KDD Multiclass Datasets 

Epochs=10, Batch_size= 512, Training_data = KDDTrain+, 
Testing_data = KDDTest+, Multiclass=5 

Optimizers Accuracy % wt_Precision % wt_F1score % 
Adam 88.46 88.87 88.23 

RMSprop 85.49 87.15 82.84 
Nadam 84.79 86.97 82.45 
SGD 82.86 84.99 77.12 
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Adamax 82.6 86.99 82.72 
Adagrad 75.65 67.01 69.94 

Ftrl 43.08 18.56 25.94 
 

TABLE 6. 5  
CNN BI-LSTM PERFORMANCE VS OPTIMIZER ON MULTICLASS UNSW-NB15 

 
CNN Bi-LSTM Performance Vs. Optimizer on UNSW-NB15 

Multiclass Datasets 
Epochs=15, Batch_size= 512, Training data=UNSW-

NB15Train82332, Testing_data = UNSW-NB15Test175341, 
Multiclass=10 

Optimizers Accuracy % wt_Precision % wt_F1score % 
SGD 89.84 87.49 88.01 
Adam 87.21 87.47 85.96 
Nadam 84.59 84.48 83.38 

RMSprop 79.3 75.71 76.85 
Adamax 76.84 76.37 74.74 
Adagrad 70.82 63.28 62.05 

Ftrl 31.94 10.20 15.46 
 
 The selection of the optimizers depends on the combination of the different 

hyperparameters and NN architecture of the CNN BLSTM model. Popular optimization 

algorithm Adam combines concepts from RMSprop and momentum. It adapts the learning 

rates of individual parameters and is widely used in deep learning. An Adam extension that 

uses the Nesterov Accelerated Gradient (NAG). NAG involves looking ahead in the 

direction of the momentum before computing the gradient that combines the benefits of 

Adam and Nesterov momentum. Fig 6.3. shows the accuracy comparison for NSL-KDD 

and UNSW15. 

Tables 6.4 and 6.5 show the comparative performance metrics of the multi-class 

NSL-KDD and UNSW-NB15. The same optimizer does not provide the same performance 

for a similar dataset. The hyperparameters and datasets used to test and train the CNN-based 

BLSTM model are provided in Tables 6.4 and 6.5. For the NSL-KDD multiclass dataset, 
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Adam performed better than SGD, whereas, for the UNSW-NB15 multiclass dataset, SGD 

performed better than other optimizers. 

 
Fig. 6. 3. Optimizer vs accuracy for Bi-LSTM model. 

 
B. Experiment: Learning rate Vs. model performance 

 The learning rate, a positive scalar multiplied by gradient descent gradient, controls 

the step size in parameter space. A higher rate facilitates faster convergence but raises the 

risk of overshooting and oscillation. On the other hand, a lower rate ensures stability but 

may demand more iterations for convergence. 

 With optimizers chosen from the preceding Experiment 6.A., the same CNN 

BLSTM model neural network architecture is used to determine the ideal learning rate to 

enhance the model performance. The NSL-KDD binary data is preprocessed from the subset 

of the KDDTrain+ dataset, and the split ratio splits the data for training and testing. The 

learning rate determines the rate at which new weights are added to neural network models. 

The other hyperparameters remain constant throughout this experiment while the learning 

rates are adjusted to optimize the model's accuracy. Table 6.6 displays a comparison of 

learning rate with CNN BLSTM model performance. The model performs best on the 
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UNSW-NB15 binary data and the NSL-KDD binary dataset, achieving a learning rate of 

0.01 and 0.0002, respectively. The same learning rate provides different model 

performances. 

TABLE 6. 6  
CNN BI-LSTM MODEL LEARNING RATE VS PERFORMANCE 

 
Epochs size = 10, Batch = 256, KDD_C2 (Nadam), UNSW-NB15_C2 (adam) 

LR ACC-NSL F1-NSL ACC-UN F1-UN 
0.01 97.49 97.67 99.67 99.76 

0.001 98.16 98.29 99.54 99.66 
0.0001 98.06 98.20 95.81 96.85 
0.0002 98.18 98.3 97.9 98.44 
0.0003 98.14 98.27 98.44 98.86 
0.0004 97.97 98.11 99.13 99.35 
0.0005 98.11 98.25 99.09 99.32 

LR: Learning rate, ACC: Accuracy in %, F1: F1Score in %, UN: UNSW_NB 
 
C. Experiment: Model dropout rate Vs. model performance 

 The phrase "dropout rate" in machine learning usually refers to a regularization 

method that neural networks employ to avoid overfitting. When a model becomes overfit, 

it can have poor generalization on new, unknown data because it has learned the training set 

too well, including its noise and outliers. During training, randomly selected neurons (units) 

in the neural network are "dropped out" or omitted temporarily. This means these neurons 

do not contribute to the forward or backward pass during a particular iteration of training. 

The probability of a neuron being dropped out is called the dropout rate. The dropout rate 

is one hyperparameter that must be determined before training the model.  

The CNN BLSTM model was tested and trained for both datasets using a batch size 

of 256 and 10 epochs. Different dropout rate values were used to evaluate the efficiency of 

the model. The model performed better than the others, with a 30% dropout rate on the 

UNSW-NB15 dataset; however, a 60% dropout rate worked better for the NSL-KDD. The 
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hyperparameter values, dropout rates, and corresponding performance metrics are presented 

in Table 6.7. The experimental results highlight the varying dropout rates for distinct 

datasets despite the similarity between the two datasets. 

TABLE 6. 7  
DROPOUT RATE VS CNN-BLSTM PERFORMANCE 

 
Epochs size = 10, batch = 256, KDD_C2 (madam), UNSW-NB15_C2 (adam) 

DropOut % ACC-NSL F1-NSL ACC-UN F1-UN 
0.1 98.10 98.24 97.44 98.15 
0.2 98.02 98.16 98.98 99.25 
0.3 98.16 98.29 99.87 99.9 
0.4 98.04 98.17 99.27 99.47 
0.5 97.93 98.09 99.47 99.61 
0.6 98.21 98.33 99.81 99.86 
0.7 98.01 98.15 99.58 99.69 
0.8 98.04 98.18 98.57 98.94 

ACC: Accuracy in %, F1: F1Score in %, NSL: KDD-NSL, UN: UNSW_NB 
KDDTrain+, UNSW-NB15 training.csv binary with test-train split 

  
  The batch size is a hyperparameter in machine learning that determines how many 

samples are used in a training iteration. The batch size represents the number of samples 

used in a single training iteration. Using a smaller batch size incorporates a limited number 

of data samples and results in a longer training time for the CNN Bi-LSTM model compared 

to a larger batch size. Throughout experimentation (Experiment A-C), the batch size is 

altered while maintaining other hyperparameters, such as a fixed number of epochs is 5, the 

learning rate of the optimizer, and the dropout rate values assigned to the model based on 

previous findings with the respective datasets. 

TABLE 6. 8  
CNN-BLSTM MODEL PERFORMANCE VS BATCH SIZE 

 
Number of Epochs = 5, KDD_C2 (Nadam), UNSW-NB15_C2(adam) 
Batch ACC-NSL % F1-NSL % ACC-UN % F1-UN % 

32 97.89 98.04 99.40 99.55 
64 97.95 98.10 99.35 99.52 

128 98.06 98.20 99.33 99.50 
256 97.64 97.79 96.36 97.26 
512 97.92 98.08 96.90 97.70 



146 
 

 
 

  

The dataset size, the amount of computing power available, and the specifics of the 

optimization issue can all influence the batch size decision. Experimenting with various 

batch sizes is a frequent way to determine which is most effective for a certain task. The 

experimental result in Table 6.8 demonstrates how the neural network's hyperparameter 

combinations affect performance. In this experiment, batch sizes of 128 for the binary NSL-

KDD datasets and 32 for the binary UNSW-NB15 datasets for epochs 5 demonstrated the 

best performance of the CNN BLSTM model.   

D. Experiment: Epochs Vs. model performance 

 An "epoch" in machine learning is one whole iteration through the training dataset 

a model goes through while training. The learning method processes the complete dataset 

throughout each epoch, modifying the neural network weights and parameters to reduce the 

error or loss function. A hyperparameter called epoch count determines an algorithm's 

running frequency over the full training dataset. The integer between one to infinity can be 

used as the epoch. Selecting smaller epoch values results in a longer training time for the 

model and vice versa. Underfitting, the ML model cannot identify the original patterns in 

the data, which can be caused by using too few epochs. However, an excessive number of 

epochs might cause overfitting, in which case the model becomes inattentive to new data 

and underperforms on previously unknown data.  

  The CNN BLSTM hybrid model performance for binary KDD-NSL and binary 

UNSW-NB15 with the different values of epochs are documented in Table 6.9. The 

performance increases with large values of epochs but is different for a while. After 75 

epochs, the model performance decreases. The amount of data utilized for training and 
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testing, the size of the output class, and other hyperparameter combinations affect the epochs 

and performance of the machine learning/deep learning models. 

TABLE 6. 9  
EPOCHS VS CNN-BLSTM PERFORMANCE 

 
Batch size = 256, NSL- KDD_C2 (Nadam) 

Number of Epochs Accuracy-NSL % F1Score-NSL % 
2 95.48 95.94 
10 98.13 98.26 
25 98.21 98.33 
50 98.20 98.33 
75 98.27 98.39 

100 98.26 98.39 
  

  The selection of epoch size to produce a superior performance on an imbalanced 

dataset is challenging. The binary dataset is more balanced than the multiclass network-

based intrusion dataset. The experimental results in Table 9 are not the determining 

experiment for the number of epochs on multiclass NSL-KDD and UNSW-NB15 datasets. 

Hence, we experimented with and documented multi-class experimental results to 

determine the values of epochs where we can produce higher accuracy on the provided 

dataset. Tables 6.10 and 6.11 show the experimental results for multiclass datasets to 

investigate the values of epochs to make superior detection accuracy. In summary, while 

epoch size and class size are conceptually different, they can influence each other indirectly, 

especially when dealing with imbalanced datasets. Selecting the right number of epochs for 

a given problem is crucial, as is keeping an eye on how class sizes affect model performance. 

TABLE 6. 10  
CNN-BLSTM PERFORMANCE VS EPOCHS ON UNSW-NB15 MULTICLASS DATA 

 
Batch=512, Optimizer=SGD, Training=UNSW-NB15Train.csv82332 testing 

data= UNSW-NB15Test.csv175341, Multiclass=10 
Epochs ACC wt_Prec wt_F1Score Prg_exe_time 

10 93.10 91.10 91.94 0.64 
25 83.09 79.94 79.69 1.17 
50 86.4 82.47 83.35 2.24 
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75 87.1 86.46 85.24 3.12 
100 90.04 88.36 88.01 4.24 
150 82.23 81.49 80.82 6.36 
200 81.13 78.65 78.84 7.95 

ACC: Accuracy in %, wt_Prec: weighted Precision in %, wt_F1Score: weighted 
F1Score in %, Prg_exe_time: Program script run time in hr. 

  

  Program execution time is the sum of the model's training and testing phases. The 

program execution time depends on various factors, such as the neural network's 

architecture, training and testing data size, class size, and combination of hyperparameters. 

We documented the performance of the CNN BLSTM hybrid model along with the program 

execution time. The higher the epochs result, the longer the program execution time. Table 

6.10 and Table 6.11 show the multi-class NSL-KDD run for almost 8 Hrs. to complete 

training testing and evaluate the model for 200 epochs. A similar scenario for multiclass 

UNSW-NB15 dataset. Hence, selecting epoch and batch size is the trade-off with the model 

training, testing, and evaluation time.  We found in Table 6.10 and Table 6.11 the different 

epoch sizes for NSL-KDD (outperform at epoch size 10) and UNSW-NB15 (outperform at 

epoch 100) during multi-class model performance. 

TABLE 6. 11  
CNN-BLSTM PERFORMANCE VS EPOCHS ON MULTICLASS NSL-KDD DATA 

 
Batch=512, Optimizer= Adam, Data=KDDTrain+_125973, KDDTest+_22544, Multiclass = 5 

Epochs ACC wt_Prec wt_F1Score Prg_exe_time 
10 86.21 88.13 83.85 0.45 
25 86.64 88.01 84.1 1.08 
50 86.64 88.7 84.78 2.15 
75 87.11 88.39 84.84 3.31 

100 87.63 89.85 86.44 4.53 
150 87.22 89.66 85.81 7.03 
200 86.84 90.61 86.41 8.76 

ACC: Accuracy in %, wt_Prec: weighted Precision in %, wt_F1Score: weighted F1Score in %, 
Prg_exe_time: Program script run time in hr. 
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E. Experiment: Imbalance data sampling Vs. performance 

 This experiment explores sampling techniques for imbalanced data to achieve a high 

detection rate. The researcher employed a combination of machine learning and deep 

learning algorithms, ensemble methods, and data sampling to tackle the challenge of data 

imbalance. This approach addresses the issue of fewer attacks compared to typical traffic 

data in the network intrusion detection dataset. 

  Sampling methods generate or delete random data from the dataset based on class 

data distribution. Random under-sampling and random over-sampling are two techniques 

used in imbalanced classification problems, where one class, usually the minority traffic 

class, is significantly under-represented compared to the other class(es). These methods are 

utilized to tackle class imbalance and enhance the efficacy of machine learning models. 

Random Under Sampling (RUS) involves randomly removing instances from the majority 

class until the distribution between the majority and minority classes is more evenly 

distributed. However, random over-sampling produces an equal distribution by randomly 

duplicating minority class instances or creating synthetic instances to increase the number 

of minority class instances. 

  Tables 6.12 and 6.13 provide the hyperparameter information and performance of 

this experiment's CNN BLSTM hybrid model. Table 6.12 compares the NSL-KDD 

multiclass dataset's performance when random over- and under-sampling is applied. After 

preprocessing multi-class NSL-KDD data, the training and testing datasets merge into a 

single file. Sampling is implemented on merged data, and a 70:30 split ratio is used to split 

data into train and test datasets. 
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TABLE 6. 12  
CNN-BLSTM PERFORMANCE VS SAMPLING ON NSL-KDD 

 
CNN BILSTM, Epochs= 25, Batch_size= 512, Data = combine 

(KDDTrain+KDDTest+) (sampling) 
Class Recall_RUS F1_RUS Recall_ROS F1_ROS 
DoS 0 0 99.86 99.92 

Probe 100 36.69 99.89 99.91 
U2R 10 18.18 100 99.73 
R2L 0 0 99.45 99.63 

Normal 0 0 99.93 99.93 
Wt_Average  22.15 10.07 99.83 99.83 
Macro_Avg 22 10.97 99.83 99.83 
Accuracy % 22.15 99.83 

[F1:F1Score, RUS: Random Under Sampling, ROS: Random Over Sampling] % 

  

  Similarly, preprocessed training data and testing data files are merged into a single 

file to implement the sampling method on the UNSW-NB15 multiclass dataset. The 

sampled data is then split into training and testing datasets using a 70:30 train-test split ratio. 

During Random under-sampling, data instances are randomly deleted from the majority 

class, resulting in significant information loss. Deleting samples from the majority class 

results in a smaller sample, unsuitable for the deep learning model and worsens the model 

performance, which is found in the experiment and documented in Tables 6.12 and Table 

6.13. Random over-sampling (ROS) helps prevent information loss, as none of the minority 

class instances are removed. It can be more effective when the amount of data in the 

minority class is limited. 

TABLE 6. 13  
CNN-BLSTM MODEL PERFORMANCE VS SAMPLING ON UNSW-NB15 

 
CNN_BLSTM Epochs=25, Batch_size=512, data = combine (UNSW-
NB15training-set_175341+UNSW-NB15testing-set_82332) sampling 

Class Recall_RUS F1_RUS Recall_ROS F1_ROS 
Analysis  0 0 100 100 
Backdoor 0 0 100 100 
DoS 0 0 100 99.95 
Exploits 100 17.51 99.91 99.95 
Fuzzers 0 0 99.98 99.99 
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Generic 0 0 99.98 99.98 
Normal 0 0 100 100 
Reconnaissance 0 0 100 100 
Shellcode 0 0 100 100 
Worms 0 0 100 100 
Weighted_Average 9.2 1.61 99.99 99.99 
Macro Average 10 1.75 99.99 99.99 
Accuracy (%) 9.20 99.99 

[F1:F1Score, RUS: Random Under Sampling, ROS: Random Over Sampling] %  
 

This method generates random data based on the data distribution in the dataset. The 

huge amount of data is always suitable for deep learning models. Regarding detection 

accuracy, our suggested CNN BLSTM hybrid model performs better than the random over-

sampling technique, offering over 99%. Tables 6.12, 6.13, and Fig 6.4. above detailed the 

CNN BLSTM hybrid model's performance for the UNSW-NB15 imbalance dataset and the 

multiclass NSL-KDD. 

V. CONCLUSION 

 The previous research from the literature reviews shows that while the detection 

accuracy for rarely occurring attack classes (U2R, R2L) is low, the average model accuracy 

for normal traffic in the UNSW-NB15 and NSL-KDD is roughly 99%. Regardless of the 

type of attack, each poses a threat to network machines equally. To provide a comparative 

analysis, we juxtapose our results with existing findings of 91.12% [51] and 90.83% [49] 

detection accuracy for NSL-KDD binary, and 99.70% [61], 82.08% [73] 82.08% for 

UNSW-NB15 binary datasets. Our experiments enhance accuracy to 98.27% on NSL-KDD 

and 99.87% on UNSW-NB15 binary datasets by carefully selecting hyperparameters and 

conducting various experiments. We explored the CNN BLSTM hybrid model's 

hyperparameters (dropout. epochs, batch size, learning rate, and optimizer) to maximize 

detection accuracy for the binary NSL-KDD and UNSW-NB15.  
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Fig. 6. 4. Sampling vs multi-class accuracy (%) for Bi-LSTM model. 
 

The model performance depends on the combination of hyperparameters, the size of 

the dataset used to train/test the model, and the selection of the machine learning/ deep 

learning model. Our research provides information about the data size used during the 

experiments and the choice of hyperparameters. The suggested model uses random over-

sampling techniques on a single set of data to provide 99.99% and 99.83% model accuracy 

for the multiclass UNSW-NB15 and NSL-KDD datasets, respectively (train and test data 

merge into a single file before sampling). 

  Selecting random over-sampling or under-sampling relies on the particulars of the 

dataset and the issue at hand. To achieve a balance, combining the two methods, a practice 

known as hybrid sampling may occasionally be necessary. It's crucial to remember that there 

are more sophisticated methods for dealing with class imbalance, such as SMOTE 

(Synthetic Minority Over-sampling Technique), which creates synthetic instances for the 

minority class instead of merely copying real instances. Thoroughly examining those 

approaches in various network intrusion detection multiclass datasets extends this research 
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effort. The proper use of hyperparameters of neural networks, size of dataset used to train 

the model, and sampling methods for CNN BLSTM network anomaly model provide the 

highest detection accuracy for imbalance network data. 
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CHAPTER 7. ADDRESSING THE CLASS IMBALANCE PROBLEM IN 

NETWORK-BASED ANOMALY DETECTION 

Abstract- Network-based anomaly detection systems play a crucial role in 

identifying malicious activities within computer networks. However, the class imbalance 

problem poses a significant challenge to the effectiveness of these systems, where normal 

network traffic vastly outweighs anomalous instances, leading to biased models favoring 

majority classes and overlooking minority anomalies. In this paper, we propose a 

comprehensive approach to tackle the class imbalance problem in network-based anomaly 

detection on NSL-KDD and UNSW-NB15 multiclass datasets. Our methodology 

incorporates various techniques, including random over-sampling (ROS), random under-

sampling (RUS), Synthetic Minority Over-sampling Technique (SMOTE), Adaptive 

Synthetic Sampling (ADASYN), SMOTE combined with Edited Nearest Neighbors 

(SMOTEENN), and the number of class reduction technique to deal with the imbalance 

data problem to enhance the detection performance. We empirically evaluate our approach 

on NSL-KDD and UNSW-NB15 network-based intrusion datasets, demonstrating its 

effectiveness in improving the bidirectional long-short memory (Bi-LSTM) performance 

metrics. Our findings indicate that addressing class imbalance significantly enhances the 

robustness and reliability of network-based anomaly detection systems, thereby 

contributing to the advancement of cybersecurity measures in modern network 

environments.  

Keywords— ADASYN, Bi-LSTM, class reductions, data imbalances, machine 

learning, ROS, RUS, SMOTE, SMOTEENN. 
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I. INTRODUCTION 

 The data generation trend and advancement of information technology have 

witnessed a remarkable surge in recent years, characterized by an exponential growth in the 

volume and variety of data produced globally. This surge is propelled by the widespread 

adoption of digital technologies such as smartphones, IoT devices, social media platforms, 

and cloud computing, resulting in an unprecedented proliferation of data sources and 

formats. Concurrently, advancements in information technology, including the development 

of big data analytics, machine learning algorithms, and edge computing infrastructure, have 

facilitated the efficient processing, analysis, and utilization of this vast amount of data. 

These advancements have not only enabled organizations to derive valuable insights and 

make data-driven decisions but have also catalyzed innovations across various sectors, from 

healthcare and finance to transportation and manufacturing, driving societal progress and 

economic growth on a global scale. 

 Network anomaly and outlier detection is a crucial aspect of cybersecurity and 

network management, aimed at identifying abnormal behavior or events within computer 

networks that deviate from expected patterns. These anomalies can indicate various security 

threats, including intrusions, malware infections, denial-of-service attacks, and insider 

threats. Outliers, on the other hand, refer to data points or events that significantly differ 

from most network traffic or behavior. Anomaly detection techniques in network security 

encompass various methods, including statistical analysis, machine learning algorithms, and 

deep learning models, to detect irregularities in network traffic, packet payloads, user access 

patterns, and system configurations. These techniques analyze network data such as traffic 

volume, packet headers, protocol usage, and connection patterns to identify suspicious 
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activities or deviations from normal network behavior. By continuously monitoring and 

analyzing network traffic, anomaly and outlier detection systems can promptly detect and 

mitigate cybersecurity threats, safeguarding network infrastructure, data assets, and critical 

resources from potential breaches or attacks. 

 Network anomaly detection methods encompass diverse techniques aimed at 

identifying abnormal behavior or events within computer networks. These methods utilize 

various approaches, including statistical analysis, machine learning algorithms, and rule-

based systems, to detect deviations from expected network behavior. Statistical methods 

typically involve establishing baseline models of normal network activity and flagging 

deviations that exceed predefined thresholds. Machine learning algorithms, such as 

supervised, unsupervised, and semi-supervised techniques, learn patterns from labeled or 

unlabeled network data to detect anomalies based on features like traffic volume, packet 

characteristics, or user behavior. Rule-based systems rely on predefined rules or signatures 

to identify known attack patterns or suspicious activities. Furthermore, advanced anomaly 

detection approaches leverage anomaly scoring mechanisms, anomaly clustering 

techniques, and ensemble learning methods to enhance detection accuracy and reduce false 

positives. By employing these methods and continuously monitoring network traffic, 

anomaly detection systems can effectively detect and mitigate cybersecurity threats, 

ensuring the integrity, availability, and confidentiality of network resources and data assets. 

 Data imbalance poses a significant challenge in network anomaly detection, where 

the occurrence of normal network behavior significantly outweighs that of anomalous 

activities. This imbalance in class distribution can lead to biased models prioritizing 

accuracy on the majority class while neglecting the detection of minority class anomalies. 
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Imbalanced datasets can hinder the performance of anomaly detection algorithms, resulting 

in high false negative rates and diminished detection sensitivity for rare anomalies. 

Traditional machine learning models trained on imbalanced data may struggle to learn 

meaningful patterns from the minority class, leading to poor generalization and limited 

anomaly detection capability. Addressing data imbalance in network anomaly detection 

requires specialized techniques such as resampling methods, for example, oversampling, 

and under sampling, algorithmic adjustments, for example, cost-sensitive learning and class 

weighting, ensemble learning approaches and anomaly generation techniques, such as, 

synthetic data generation. Additionally, adopting advanced anomaly detection methods, 

such as deep learning architectures and anomaly-specific algorithms, can help mitigate the 

impact of data imbalance by leveraging the representation learning capabilities of deep 

neural networks and the flexibility of anomaly-centric models. By addressing data 

imbalance effectively, network anomaly detection systems can achieve improved detection 

performance, enhanced resilience against cybersecurity threats, and better overall network 

security posture. 

 Performance improvement techniques in network anomaly detection play a pivotal 

role in enhancing the effectiveness and efficiency of anomaly detection systems. These 

techniques encompass a variety of strategies aimed at optimizing the detection accuracy, 

reducing false positives, and enhancing the responsiveness of anomaly detection algorithms. 

Key approaches include feature selection and engineering, where relevant features from 

network data are identified and transformed to enhance the discriminatory power of 

anomaly detection models. Algorithm selection and optimization are equally crucial, as 

choosing appropriate anomaly detection algorithms and fine-tuning their parameters can 
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significantly impact detection performance. Ensemble learning methods, such as bagging 

and boosting, further improve performance by combining multiple anomaly detection 

algorithms to leverage their complementary strengths and enhance detection accuracy and 

robustness.  

 Additionally, data preprocessing techniques, including normalization and outlier 

removal, improve data quality and consistency, leading to more reliable anomaly detection 

outcomes. Rigorous evaluation methodologies, such as cross-validation and the use of 

appropriate evaluation metrics, ensure accurate performance assessment and model 

validation, guiding further refinement and enhancement efforts. By integrating these 

performance improvement techniques, network anomaly detection systems can achieve 

higher detection accuracy, lower false positive rates, faster response times, and greater 

resilience against cybersecurity threats, thereby fortifying the overall security posture of 

network infrastructures and safeguarding critical data assets. 

 Different types of sampling techniques, including under-sampling, oversampling, 

and hybrid sampling, are commonly employed in network anomaly detection to address 

challenges associated with imbalanced datasets and enhance the performance of anomaly 

detection systems. Under-sampling techniques involve reducing the number of instances in 

the majority class by randomly selecting a subset of data points, thereby balancing class 

distributions. This approach aims to prevent the dominance of the majority class and 

improve the model's ability to detect minority class anomalies. Conversely, oversampling 

methods focus on increasing the representation of the minority class by either replicating 

existing instances or generating synthetic samples. Techniques like SMOTE (Synthetic 

Minority Over-sampling Technique) create synthetic instances based on the characteristics 
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of existing minority class samples, effectively expanding the dataset and alleviating class 

imbalance. Hybrid sampling techniques combine elements of both under-sampling and 

oversampling approaches to strike a balance between retaining important information from 

the majority class and providing sufficient representation for the minority class. By 

leveraging these sampling techniques, network anomaly detection systems can achieve 

better generalization, mitigate the impact of data imbalance, and enhance their ability to 

detect anomalous activities with higher accuracy and reliability in real-world network 

environments. In supervised machine learning, reducing the number of classes is a technique 

employed to simplify the classification task and potentially improve model performance, 

particularly in scenarios with a large number of classes or imbalanced class distributions. 

  This reduction can be achieved through several methods. Class Aggregation or 

Merging; similar classes can be merged or aggregated into a single class, reducing the 

overall number of distinct classes in the dataset. This approach helps simplify the 

classification problem by grouping related classes together and reducing the complexity of 

the model.  

 Class elimination is the technique where some classes may need to be more relevant 

or contribute minimally to the classification task. Removing these classes from the dataset 

can reduce noise and focus the model's attention on the most important and discriminative 

classes, potentially leading to improved performance. Hierarchical classification organizes 

classes into a hierarchical structure, where higher-level classes represent broader categories, 

and lower-level classes represent more specific subcategories. Reducing the number of 

classes at higher levels of the hierarchy makes the classification task more manageable, 

allowing the model to focus on finer distinctions within fewer categories. Thresholding is 
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where classes with low frequencies or instances may be combined into a single "other" or 

"miscellaneous" class if they contribute little to the overall classification performance. This 

simplifies the problem by reducing the number of distinct classes while capturing important 

information.  

 Reducing the number of classes in supervised machine learning can lead to a more 

focused and efficient classification task, especially when the original class structure is 

overly complex or noisy. However, it is essential to carefully consider the implications of 

class reduction on the interpretability and generalization of the model, as well as the 

potential loss of information resulting from merging or eliminating classes. Evaluating the 

impact of class reduction techniques on overall model performance through rigorous testing 

and validation is crucial to ensure that the simplified classification task still effectively 

captures the underlying patterns and relationships in the data. 

II. RELATED WORK 

 The network anomaly is detected by combining different methods, including data 

preprocessing, working with different combinations of machine learning algorithms to 

improve the performance. The data imbalance is one of the huge problems due to the large 

regular set of data generation compared to the anomaly present in it. The dataset class 

containing a small number of instances is called the minority class. The traditional 

classification models perform negatively with the unbalanced dataset called the class 

imbalance problem. Authors [80] mention that class imbalance problems can be solved 

using different methods, such as working with data and algorithms and combining both data 

and algorithms. The oversampling and under-sampling methods are mostly used methods 

to balance the data. Authors compare various oversampling techniques, including SMOTE, 
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ADASYN, Borderline-SMOTE, and Safe-Level SMOTE, for different sets of classifiers 

and performance metrics. Authors [81] researched the class imbalance problem from 

previously published research works. Data level and algorithm level methods are two 

techniques for dealing with data imbalance problems. Data level methods mostly focus on 

sampling the training data to deal with the class imbalance problems. In contrast, the 

algorithm-level methods depend on the different machine learning or deep learning methods 

used for modeling the data. The data level approach includes data sampling, feature 

selection, etc. Similarly, the algorithm-level methods include ensemble methods and hybrid 

methods. 

 The authors [82] used data augmentation to deal with the data imbalance problem 

using different sets of models, including K-means, Random Forests, and Neural Networks. 

GAN is used to generate adversarial samples based on the attack class used. The data is 

selected in percentage values from the whole dataset to train and test the model such as 1%, 

3%, 50%, and more. During this study, Generative Adversarial Network (GAN) showed a 

slightly better performance than SMOTE in detecting the anomaly. During this work, the 

researcher focused on working on data to deal with imbalance problems in network-based 

anomaly detection. 

 Authors [83] proposed the hybrid deep learning model that combines CNN and 

BLSTM models to evaluate the effectiveness of five deep learning models on different 

network datasets, including CIC-IDS2017, IoT-23,  and UNSW-NB15. The overall model 

accuracy was 76.32% for the multiclass UNSW-NB15 dataset. During this work, the authors 

worked to find a better hybrid model for the network-based anomaly detection on the 

imbalance dataset. 
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 Authors [84] used the attention-based LSTM and attention-based bidirectional 

LSTM intrusion detection with the SMOTE technique to balance the UNSW-NB15 dataset 

to deal with the data imbalance problem. The authors achieved the highest detection rate of 

93%. The authors [85] used reinforcement learning combined with SMOTE techniques to 

address the data imbalance problems on the NSL-KDD dataset. In this research work, 

authors compared the performance metrics using techniques including SMOTE, ROS, 

NearMiss1, and NearMiss2 and found the highest accuracy of 82% and F1 of 82.4%. 

 Authors [50] used the one-side selection and SMOTE sampling to deal with the data 

imbalance problem during the data preprocessing stages. Then convolution neural network 

combined with the bidirectional long short-term memory hybrid model experimented on 

NSL-KDD and UNSW-NB15 datasets with model accuracy of 83.58% and 77.16%, 

respectively. Authors [50] implemented the hybrid deep learning models consisting of the 

combination of CNN and BLSTM models where they used one-side selection to reduce the 

noise samples from the majority classes and then synthetic minority over-sampling 

(SMOTE) strategies to deal with the data imbalance for the NSL-KDD and UNSW-NB15 

network traffic datasets. Their model provided the highest accuracy of 83.58% for NSL-

KDD and 77.16% for the UNSW-NB15 dataset. Authors [84] implemented the attention-

based long short-term memory (AT-LSTM) and attention-based bidirectional LSTM 

(BLSTM) on the UNSW-NB15 dataset. They implemented synthetic minority over-

sampling (SMOTE) to balance the dataset and achieved a 93% detection rate.  The detection 

rate of analysis attacks is very low which is 7% for AT-LSTM and 8% for AT-BLSM 

models while the normal and generic class detection rate is 100%. 
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 Authors [86] proposed the combination of Genetic Algorithms (GA) and GAN to 

improve anomaly detection for class imbalance problems in their case study-based research 

work. The multi-objective GAN (MOGAN) generates samples related to the minority 

classes to address the class imbalance problems. Authors [87] proposed an LSTM-based 

novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle 

swarm optimization (PSO) to improve the accuracy of the LSTM algorithm to efficiently 

detect the network-based intrusion for a binary and multiclass dataset, including NSL-KDD 

and LITNET-2020. They achieved a model accuracy of 93.09% on the binary KDDTest+ 

dataset and 86.89% on the binary KDDTest-21 dataset. Authors [87] proposed an improved 

version of the long short-term memory model, which integrated the chaotic butterfly 

optimization algorithm ( CBOA) and particle swarm optimization (PSO) to improve the 

detection accuracy on multiclass and binary class NSL-KDD and LITNET2020 datasets.  

The model provides the highest accuracy of 91.31% on the KDDTest+ dataset. The hybrid 

sampling methods deal with the data imbalance problem of the NSL-KDD dataset. 

 Authors [49] proposed the deep learning model for network anomaly detection, 

which combines an attention mechanism, convolutional neural network, and bidirectional 

LSTM  to detect the network traffic anomaly. They implemented adaptive synthetic 

sampling (ASASYN) to deal with the class imbalance problem on the NSL-KDD dataset 

with the highest accuracy of 90.73% and F1-score of 89.65%. Authors [88] implemented 

the hyperparameter tuning and random synthetic over-sampling techniques in the CNN 

network combined with the Bi-LSTM model to increase the model efficiency in terms of 

accuracy and F-measure of 98.36% and 99.05%, respectively, on the NSLKDD dataset. 
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 Authors [89]   implemented the CNN with BLSTM model selecting features using 

a random forest classifier along with the recursive feature elimination approach to evaluate 

the performance of the binary and multiclass NSL-KDD and UNSW-NB15 datasets. Their 

model produces the highest accuracy of 95.96% on the binary NSL-KDD dataset and 

93.51% accuracy on the binary UNSW-NB15 dataset. They applied random oversampling 

to deal with the class imbalance problem, which resulted in an average detection accuracy 

of 98.42% for the NSL-KDD multiclass dataset and 84.23% average accuracy for the 

UNSW-NB15 multiclass dataset. 

 Authors [90] purposed the attention-based LSTM model and different 

dimensionality reduction techniques including Chi-square, UMAP, principal components 

analysis, and mutual information are used on the NSL-KDD dataset. The 3 component PCA 

dimensionality reduction provides the highest accuracy of 99.09% on binary and 98.49% 

on multiclass NSL-KDD datasets. Authors [91] proposed an algorithm based on sampling 

and improved One-vs-All (OVA) where the dataset is down-sampled with the majority 

classes during an auxiliary classifier generative adversarial network. The model accuracy 

was improved using OVA-based model training and testing. 

 In the previous work [53], we implemented the heterogeneous ensemble methods to 

improve the performance network intrusion detection system. In [54] , the in-depth 

comparison of the performance of the binary and multiclass network intrusion system where 

the number of classes is reduced to enhance the performance. In [78], [76], the 

hyperparameters are tuned to enhance the network anomaly detection. Similarly, in [92] , 

[79] the research is based on the sampling methods to deal with the network imbalance 

dataset using the deep learning models.  
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 From the above literature reviews, the authors [80], [81]  performed detailed studies 

regarding data imbalance problems and different techniques to overcome the issues related 

to data imbalance.  Authors [82] implemented the learning-based data augmentation 

techniques, which suffer from the model collapse problem. Authors in [83] did not reference 

the selection of the hyperparameters, such as optimizers and dropout rates. In [84], [85], the 

data preprocessing where the training and testing dataset contains unequal numbers of data 

entries, which generate the different numbers of features in training and testing datasets.  

The information regarding the training and testing datasets is missing. In [50] [84] , authors 

implemented the SMOTE techniques and hybrid deep learning algorithms to improve the 

performance. The information on the hyperparameters is not clear in [88] and also the 

training and testing dataset (70:30 train and test ) during sampling information. In [86], the 

disadvantage of GA is slow convergence, so we need to do hyperparameters tunning the 

used model. In [87], data preprocessing and model optimization techniques are implemented 

to enhance the model performance for imbalanced network datasets. The data preprocessing 

and one hot encoding details information needs to be included in their works.  

 Authors [49] implemented  ADASYN sampling on U2R and R2L of the training 

dataset. The selection of Network hyperparameters needs to be clarified. In [89] [90] [91], 

sampling, feature engineering, and model selections were implemented to enhance the 

performance of network anomaly detection. In [53] [54] [78] [76] [92] [79], The research 

work focused on data and algorithms without missing data preprocessing and tuning 

hyperparameters in anomaly detection algorithm.  

 Further, our research work will fill the gap of the data preprocessing, and 

hyperparameters selection to enhance the anomaly detection in imbalance dataset. This 
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research work focused to find the insight of the sampling methods and combinations on 

training and testing dataset. This work contributes in the field of machine learning and 

imbalance data analysis.  

The main contributions of this research work are: 

1) Investigating the effect of different types of random over-sampling, random under-

sampling, and hybrid sampling methods on the Bi-LSTM model. 

2) Investigating the sampling methods on different combinations of training and testing 

data. 

3) Investing the data preprocessing for training and testing data where the different 

numbers of categorical values are present such as training data and test data set have 

different entries of categorical data which generates the unequal numbers of columns 

during one hot encoding.  

4) Investigating the different number of classes for supervised learning-based anomaly 

detection to enhance the performance without deleting the data entries of the 

imbalance dataset. 

5) The Bi-LSTM-based model produces the best F1-score when we apply the sampling 

on the single dataset and implement the train test split ratio for the model training and 

testing dataset. The random over-sampling produces an F1 score of greater than 99.9% 

(99.91 % for the KDD dataset and 99.93% for the UNSW-NB15 dataset) 

6) Investing the sampling Vs. reduction in the number of classes for imbalanced datasets 

in the field of network anomaly detection. 
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The remainder of the paper covers three sections. Section II describes the system 

model of the Bi-LSTM approach. Section III illustrates the results and discussion, while  

Section IV concludes this research work. 

III. SYSTEM MODEL  

The overall proposed model encompasses the following steps. 

1. Network Intrusion Datasets  

2. Data Pre-processing 

3. Training and Testing data preparation  

4. Bi-LSTM model preparation  

5. Bi-LSTM model training  

6. Model testing, evaluation, comparison, and decision. 

The overall implementation schematic of the bidirectional LSTM-based model is 

shown in Fig. 7.1. A detailed discussion of the above-stated methods is provided in the 

subsequent sections.  

 

 

 

 

Fig. 7. 1. Block diagram of Bi-LSTM model. 
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A. Network Intrusion Datasets 

This research utilizes two distinct network-based intrusion datasets: NSL-KDD 

[64] and UNSW-NB15 [75]. Within the NSL-KDD dataset, two subsets are employed for 

model training and testing purposes. Specifically, KDDTrain+ and KDDTest+ encompass 

the complete NSL-KDD train and test data, respectively, alongside information regarding 

difficulty level, target class, and attack types. These subsets comprise 41 features along 

with details on attack types, difficulty level, and target class. The NSL-KDD subset 

represents an advancement over the KDD99 dataset, encompassing various attack classes 

such as Normal, DoS, Probe, R2L, and U2R. KDDTrain+ comprises 125,973 records, 

while KDDTest+ comprises 22,544 records. 

The experiments concerning data imbalance also involve the utilization of UNSW-

NB15 datasets. A division of this dataset was designated for training and testing purposes, 

denoted as UNSW_NB15_training-set.csv and UNSW_NB15_testing-set.csv, 

respectively. The training set file contains a total of 82,332 records, while the testing set 

file contains 175,341 records. The dataset utilized in this research encompasses 43 features, 

attack categories, and labels. Various types of attacks are represented in this dataset, 

including Analysis, Backdoor, DoS, Exploit, Fuzzers, Generic, Reconnaissance, Shellcode, 

and Worms. 

B. Data Pre-processing  

  Since those data are a cleaned version of the KDD99 dataset, there is little work for 

data preprocessing. The downloaded files are labeled as test and train data. The target class 

is initially separated from the training and testing datasets to create the class label. Three 

categorical features, including protocol-type, service, and flag, are extracted from the pool 
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of feature sets remaining numerical features. The categorical features are converted into 

numerical values using dummy one-hot encoding methods, while those numerical features 

are normalized using standard Scalar methods. Both types of feature sets are combined into 

a single data frame, resulting in final datasets for training and testing datasets.  

  Since there are different types of services present in the KDDTrain+ dataset and 

KDDTest+ dataset, the one hot encoding produces unequal numbers of features. The 

KDDTrain+ dataset contains a total of 126 features, while the KDDTest+ contains a total 

of 120 features after the implementation of one hot encoding. Those additional features 

service_aol, service_harvest, service_http_2784, service_http_8001, service_red_i, and 

service_urh_i are inserted into the KDDTest+ dataset after finding the exact location where 

those features reside into the KDDTrain+ dataset. We preserved the attacks_types and 

difficulty_level features because those features are highly relevant to the target class and 

increase the model's efficiency. 

TABLE 7. 1  
CLASS INFORMATION ON NSL-KDD 

 
Class Categories 
2 Normal, abnormal 
3 Normal, DoS, R2L_probe_U2R  
4 Normal, DoS, probe, U2R_R2L 
5 Normal, Dos, R2L, probe, U2R 

 
All the attacks in the network or systems help to enter the intruder into the network 

or system. We used Table 7.1 above for the class reduction experiments to reduce the 

classes in the KDDTrain+ and KDDTest by combining the different attack classes into the 

new attack class. For example, class 3 consists of one normal class and two attack classes. 

Among the attack classes, DoS is the attack class in the given dataset, but the new attack 

class is the combination of R2L, Probing, and U2R attack classes from the given dataset. 

I I 
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UNSW-NB15 dataset was divided into two sets for training and testing purposes, 

labeled UNSW_NB15_training-set.csv and UNSW_NB15_testing-set.csv. The 

UNSW_NB15_training-set comprises 175,341 records, while the UNSW-NB15_testing-

set comprises 82,332 records, encompassing various attacks and normal data. Initially, the 

features on this dataset are 49. Some features such as source IP, destination IP, source port, 

and destination port are removed from the original dataset before starting the 

preprocessing. Three features are categorical (proto, service, and state); the remaining are 

numerical features comprising 43 features and two additional features: attack category and 

label.   

  First, those categorical features are converted into numeric using dummy one hot 

encoding. All numerical features are applied to the standard scalar normalization method. 

Every time, the target class or label is converted into a numeric using the label encoding 

method. After preprocessing the numeric and categorical features, 192 features for 

UNSW_NB15_testing-set data and 196 features for UNSW_NB15_training-set data were 

generated. Again, here we are taking two sets of data: one we can use for training and the 

other for testing or vice versa. The categorical values of data entries are not the same for 

both datasets; hence, the one hot encoding produces unequal numbers of features on both 

data sets after preprocessing. Some features generated from one hot encoding, such as 

state_ACC and state_CLO, are not included in the UNSW-NB15_training-set. Similarly, 

proto_icmp, proto_rtp, state_ECO, state_PAR, state_URN, and state_no features are not 

included on UNSW_NB15_testing-set. The empty columns are inserted in the exact 

location of those missing features on the respective dataset, generating 198 features plus 

one target class. 
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TABLE 7. 2  
CLASS INFORMATION ON UNSW-NB15 

 
Class UNSW-NB15 traffic categories 

2 Normal, Attacks 
3 Normal, Generic, Ex_Fu_Do_Re_An_Ba_sh_wo 
4 Normal, Generic, Exploits, Fu_Do_Re_An_Ba_sh_wo 
5 Normal, Generic, Exploit, Fuzzers, Do_Re_An_Ba_sh_wo 
6 Normal, Generic, Exploit, Fuzzers, DoS, Re_An_Ba_sh_wo 
7 Normal, Generic, Exploit, Fuzzers, DoS, Recon, An_Ba_sh_wo 
8 Normal, Generic, Exploit, Fuzzers, DoS, Recon, Analysis, Ba_sh_wo 
9 Normal, Generic, Exploit, Fuzzers, DoS, Recon, Analysis, Backdoor, sh_wo 
10 Normal, Generic, Exploit, Fuzzers, DoS, Recon, Analysis, Backdoor, 

shellcode, worms 
Ex-Exploits, Fu-Fuzzers, Do-DoS, Re-Reconnaissance, An-Analysis, Ba-Backdoor, 
sh-Shellcode,wo-Worms  

 
Some attack classes consist of small numbers of data, so all the network attacks are 

equally contributed to letting the intruder in the system or networks. Here, we combined 

some attacks into new attack categories to reduce the number of classes in the training and 

testing dataset. Table 7.2 was referenced to create the different numbers of multiclass 

training and testing datasets. The combination of the different classes was based on the 

number of attacks present in the class. The regrouping minor attacks created the new types 

of attack class.  

C. Training and Testing Datasets Preparation   

  The train-test split methodology evaluates the performance of machine learning 

algorithms in predicting outcomes from unseen data. We opt for a 70:30 split ratio for our 

Bi-LSTM model when dealing with single-file data preprocessing. However, when using 

two separate files for training and testing, the specifics regarding the quantity of training 

and testing data are elucidated in the preceding data preprocessing section above. 



172 
 

 
 

D. Bi-LSTM Model Preparation 

 A recurrent neural network (RNN) utilizes feedback loops to analyze sequential 

data and make predictions. RNNs store past and future state information in their memory, 

making them effective for tasks like speech recognition, language processing, and image 

classification. Long Short-Term Memory (LSTM) networks address the issue of vanishing 

gradients in RNNs by employing memory blocks and three multiplicative units known as 

input, output, and forget gates. These gates, akin to write, read, and reset operations, allow 

LSTM cells to retain and retrieve data over prolonged periods, mitigating the vanishing 

gradient problem. Bidirectional RNNs merge two separate RNNs to process input in both 

forward and backward directions. The forward and backward LSTM networks form the 

two components of a Bidirectional LSTM (Bi-LSTM). The forward LSTM extracts feature 

in the forward direction, while the backward LSTM does so in the reverse. By utilizing 

sequences from both past and future contexts, the Bi-LSTM predicts or labels each element 

in a sequence. This is achieved through two LSTMs operating sequentially, one from left 

to right and the other from right to left.   

E. Bi-LSTM model training   

  The architecture of the Bi-LSTM model's neural network is prepared for training. 

The datasets are structured to have separate sets for training and testing, or vice versa. The 

split percentage determines the allocation of data for training and testing when dealing with 

a single dataset. The selection of model training hyperparameters is conducted through 

various experiments, refining parameters such as epochs and batch size to enhance 

detection efficiency. Additionally, 20% of the training data is set aside for validation 

purposes in assessing the Bi-LSTM model's performance.   
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F. Model testing Evaluation, Comparing and Making decisions 

 The model is constructed and trained using the training dataset with specified 

hyperparameter values. The training duration varies based on these parameters. Following 

training, the model evaluates its performance on unseen data. As there are no predefined 

rules for hyperparameter selection, a combination of random selection and fine-tuning is 

employed through different experiments. Post-testing, performance metrics are determined, 

and tailored to the specific machine learning model used. In supervised learning, ground 

truth values are utilized to assess metrics such as detection accuracy, precision, F1-Score, 

Recall, program execution time, Area under the ROC curve, etc. Keras' classification report 

generates metrics like true positives, true negatives, false positives, and false negatives. The 

confusion matrix furnishes comprehensive performance evaluation for the given training 

and testing datasets. 

 Various experiments are conducted to find optimal hyperparameter values for 

improved results. These experiments involve comparing the accuracy and F1-score across 

different configurations of the optimizer, epochs, batch size, and train-test split ratio for the 

Bi-LSTM model. Additionally, our model's performance parameters are compared with 

existing research results to gauge its effectiveness. Specifically, we recorded and compared 

F1 scores for NSL-KDD and UNSW-NB15 multiclass NIDS datasets. 

IV. RESULTS AND DISCUSSIONS 

  The intrusion detection system utilizes machine learning and deep learning 

techniques to identify anomalies. Python scripting is employed to develop code for 

implementing a network intrusion detection model, leveraging packages such as NumPy, 

Pandas, Keras, and sci-kit-learn. Additionally, tools like WEKA, Java, C#, Visual C++, and 
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MATLAB are commonly used for intrusion detection systems. To ensure reproducibility, 

seed values are set to yield consistent results across multiple runs on the Jupyter Notebook 

platform. Experimental findings are analyzed using plots or tables within the MS Office 

suite. These experiments are conducted on a Windows machine with 16GB RAM and an i7 

processor. The versions of Python and its packages used in this research are Python 3.7.12, 

Keras 2.6.0, and TensorFlow 2.9.1. Various experiments are conducted to compare 

performance across different class sizes and sampling methods for the Bi-LSTM model 

using NSL-KDD and UNSW-NB15 datasets, detailed in subsequent sections. 

 Under-sampling is a simple yet effective method for dealing with class imbalance 

in datasets. It entails retaining all data from the minority class while decreasing the volume 

of data in the majority class. This technique is valuable for data scientists seeking to improve 

the accuracy of insights derived from imbalanced datasets. During under-sampling, random 

samples from the majority class are removed until a balanced distribution is attained. While 

reducing data volume can mitigate storage limitations and improve processing efficiency, 

it's essential to acknowledge that this process may lead to the loss of valuable information. 

 The over-sampling technique is used to address dataset scarcity by increasing the 

number of rare samples, and counteracting imbalance. Unlike under-sampling, where excess 

samples are discarded, oversampling methods create new rare samples. Techniques like 

replication, bootstrapping, and SMOTE (Synthetic Minority Over-Sampling Technique) are 

employed for this purpose. SMOTE involves generating synthetic data points for the 

minority class by selecting k nearest neighbors to determine the level of oversampling. 

 Random over-sampling generates the new samples randomly with the replacement 

of current available samples while SMOTE generates the synthetic data without 
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replacement. The ADASYN produces a different number of samples by estimating the local 

distribution of the class to be oversampled. The SMOTEENN is a hybrid sampling method 

that works by combining SMOTE and Edited nearest neighbors (ENN) methods to generate 

the samples. While the random under-sampling removed the samples from the majority 

class with or without replacement. The sampling is implemented in Experiment 1 and 

Experiment 2. 

A. Experiment-1 Sampling Vs. Bi-LSTM Model Performance on NSL-KDD dataset.  

  Four different sets of experiments were performed on the NSL-KDD dataset. The 

oversampled techniques add the data samples to the minority class hence the samples on 

all the classes become equal. The under-sampling removed the data samples from the 

majority class and the number of samples in the majority class was equal with the minority 

class. The sampling techniques either delete the samples or add redundancy into the dataset 

implementing the methods used in the datasets. 

TABLE 7. 3  
SAMPLING ON TRAINING DATASET AND F1_SCORE ON NSL-KDD 

 
Sampling on the training data set, model test using the original testing dataset, F1_score (%) 

on NSL-KDD 
Epochs= 50, Batch_size= 512, Training_data = KDDTrain+(sampling), Testing_data = KDDTest+ 
Class F1_ru F1_ro F1_smt F1_adsyn F1_smteen 
DoS 79.74 89.75 89.91 91.04 92.25 
Probe 75.29 77.53 75.73 76.7 76.19 
U2R 24.1 16.67 33.53 36.19 21.88 
R2L 67.16 56.34 56.9 67.25 62.34 
Normal 87.47 97.23 97.07 95.42 99.66 
Wt_Avg 80.82 87.17 87.08 88.18 89.68 
Macro_Avg 66.75 67.5 70.63 73.32 70.46 
ru: Radom under-sampling, ro: Random Over-sampling, smt: SMOTE, adsyn: ADASYN, smteen: 
SMOTEENN, F1:F1_score (%) 

 
  Hyperparameters for the Bi-LSTM models were chosen based on prior research 

[79] . Initially, various sampling techniques were applied to KDDTrain+ for training the 
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Bi-LSTM model. Subsequently, the pre-processed version of KDDTest+ was used to 

evaluate the model, and F1 scores were recorded in Table 7.3 for different sampling 

methods. The Bi-LSTM model was trained for 50 epochs with a batch size of 512. F1 

scores were recorded using both weighted and macro averaging, which are suitable metrics 

for evaluating performance on imbalanced multiclass datasets. Among the sampling 

methods, the Bi-LSTM model achieved the highest performance with an F1 score of 

89.68% using hybrid sampling methods (SMOTEENN) in terms of weighted average, 

while ADASYN yielded the best result in terms of macro-averaged F1 score at 73.32%, 

outperforming random oversampling, SMOTE, and random under sampling. 

TABLE 7. 4  
SAMPLING INDIVIDUALLY ON TRAINING AND TESTING DATA AND F1-SCORE FOR NSL-KDD 
 

Sampling individually on both training and testing dataset, F1-Score (%) on NSL-KDD 
Epochs= 50, Batch_size= 512, Training_data = KDDTrain+(sampling), Testing_data = 

KDDTest+(sampling) 
Class F1_ru F1_ro F1_smt F1_adsyn F1_smteen 
DoS 74.42 88.15 78.58 81.31 81.83 
Probe 84.85 73.42 77.65 73.54 78.64 
U2R 75.81 70.99 56.39 26.24 58.74 
R2L 61.67 36.72 42.87 44.23 47.6 
Normal 77.58 90.85 92.82 92.84 99.15 
Wt_Avg 74.86 78.07 69.66 63.63 73.19 
Macro_Avg 74.86 72.02 69.66 63.63 73.2 
ru: Radom under-sampling, ro: Random Over-sampling, smt: SMOTE, adsyn: ADASYN, 
smteen: SMOTEENN, F1:F1_score (%) 

 
  Table 7.4 displays the performance metrics of the Bi-LSTM model when both the 

training (KDDTrain+) and testing data (KDDTest+) are individually sampled. Each dataset 

underwent separate preprocessing procedures, resulting in smaller datasets for under-

sampling and larger ones for oversampling. Following sampling, both training and testing 

datasets achieved balance. The F1 scores exhibited different outcomes compared to Table 

7.3, indicating improved balance during model testing. The model achieved its highest 



177 
 

 
 

weighted average F1 score of 78.07% with naive random oversampling and its highest 

macro average of 74.86% with naive random under-sampling methods. 

TABLE 7. 5  
SAMPLING ON THE COMBINED DATA (TRAINING AND TESTING) AND F1-SCORE ON NSL-

KDD 
 

Sampling on combined data set (training and testing), train-test split, F1_score (%) on NSL-
KDD 

Epochs= 50, Batch_size= 512, Data = combine (KDDTrain+KDDTest+) (sampling) 
Class F1_ru F1_ro F1_smt F1_adsyn F1_smteen 
DoS 97.06 99.96 99.98 99.97 99.99 

Probe 98.41 99.67 99.95 99.96 99.93 
U2R 87.8 99.94 99.56 99.48 99.68 
R2L 88.52 98.16 99.54 99.42 99.62 

Normal 98.46 99.99 99.99 99.99 1 
Wt_Avg 94.69 99.91 99.81 99.77 99.85 

Macro_Avg 94.05 99.54 99.81 99.76 99.84 
ru: Radom under-sampling, ro: Random Over-sampling, smt: SMOTE, adsyn: ADASYN, smteen: 
SMOTEENN, F1:F1_score (%) 

 
   

   The train-test split method was employed to separate training and testing data after 

applying sampling techniques to a unified dataset. Table 7.5 and Table 7.6 present the 

performance of the Bi-LSTM model when data were sampled into a single file format. Both 

KDDTrain+ and KDDTest+ data were merged into a single dataset and pre-processed to 

create training and testing data. The Bi-LSTM model achieved its highest performance, as 

shown in Table 7.5, with oversampling methods. It attained a weighted F1-Score of 99.91% 

with random oversampling and a macro average of 99.84% with hybrid sampling. 

Similarly, using the single dataset named KDDTrain+ for preprocessing, followed by train-

test splitting, the Bi-LSTM model yielded comparable results, as shown in Table 7.6, with 

a weighted average F1-score of 99.97% during random oversampling and a macro average 

of 99.84% during hybrid sampling. Thus, employing the single dataset for preprocessing 
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before applying the train-test split method consistently produced the best results for the Bi-

LSTM model. 

TABLE 7. 6  
SAMPLING ON SINGLE DATASET AND F1-SCORE ON NSL-KDD 

 
Sampling on single data set, train-test split, F1_score (%) for NSL-KDD 
Epochs= 50, Batch_size= 512, Data = KDDTrain+(sampling)_train_test_split 
Class F1_ru F1_ro F1_smt F1_adsyn F1_smteen 
DoS 1 99.98 99.99 99.99 99.99 
Probe 93.33 99.91 99.97 1 1 
U2R 66.67 99.97 99.66 99.12 99.79 
R2L 84.21 98.09 99.65 99.09 99.79 
Normal 1 99.99 1 1 1 
Wt_Avg 90.39 99.97 99.85 99.64 99.91 
Macro_Avg 88.84 99.59 99.85 99.64 99.91 
ru: Radom under-sampling, ro: Random Over-sampling, smt: SMOTE, adsyn: 
ADASYN, smteen: SMOTEENN, F1:F1_score (%) 

 

B.  Experiment-2 Sampling Vs. Bi-LSTM Model Performance on UNSW-NB15 dataset. 

  Experiments were conducted on the multiclass UNSW-NB15 dataset. Table 7.7 

displays performance metrics obtained by sampling the training set using various 

techniques during preprocessing. The Bi-LSTM model underwent training for 50 epochs 

with a batch size of 512, consistent with prior experiments. Subsequently, the model was 

tested on the unaltered testing dataset of UNSW-NB15.  

 
TABLE 7. 7  

SAMPLING ON TRAINING DATA AND F1-SCORE ON UNSW-NB15 
 

Sampling on training data set, model test using original testing dataset, 
F1_score (%) on UNSW-NB 

Epochs=50, Batch_size=512, Training_data = training-set_175341 (sampling), 
Testing_data = testing-set_82332 

Class F1_ru F1_ro F1_smt F1_adsyn F1_smteen 
Analysis  64.38 71.75 71.04 71.45 70.63 
Backdoor 4.25 2.46 1.75 1.9 1.75 
 DoS 52.08 8.59 17.1 6.05 5.63 
Exploits 75.12 44.62 68.17 59.55 34.77 
Fuzzers 80.36 39.07 85.43 67.6 75.96 
Generic 79.74 83.62 81.66 64.61 96.15 
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Normal 68.34 89.53 87.31 74.73 95.83 
Reconn. 26.06 99.63 99.83 99.3 81.5 
Shellcode 0 98.31 98.44 97.8 98.57 
Worms 0 70.59 85.71 72.46 87.18 
Wt_Avg 69.32 74.07 79.64 67.03 80.23 
Macro_Avg 45.03 60.82 69.64 61.55 64.8 
ru: Radom under-sampling, ro: Random Over-sampling, smt: SMOTE, adsyn: 
ADASYN, smteen: SMOTEENN, F1:F1_score (%) 

 
Results in Table 7.7 indicate that hybrid methods yielded the highest weighted average F1-

score of 80.23%, while SMOTE sampling achieved the highest macro average F1-score of 

69.64%. Although different sampling methods balanced the training dataset, the testing 

dataset remained imbalanced after preprocessing.  

TABLE 7. 8  
SAMPLING INDIVIDUALLY ON BOTH TRAINING/TESTING SET AND F1-SCORE ON UNSW-

NB15 
 

Sampling individually on both training and testing dataset, F1_score (%) 
on UNSW-NB 

Epochs=50, Batch_size=512, Train_set = training-set_175341 (sampling), 
Test_set= testing-set_82332(sampling) 

Class F1_ru F1_ro F1_smt F1_adysn F1_smteen 
Analysis  70.4 68.69 67.99 68.66 68.74 
Backdoor 26.83 9.06 6.28 8.65 10.33 
 DoS 34.29 13.84 23.41 17.5 29.24 
Exploits 75.61 37.58 63.23 44.49 36.43 
Fuzzers 90.24 39.98 84.84 81.29 91.61 
Generic 91.49 90.45 89.55 71.31 94.34 
Normal 62.07 89.21 87.15 72.55 94.08 
Recon. 67.35 91.65 99.97 97.36 99.87 
Shellcode 75.86 88.1 88.09 79.92 88.39 
Worms 0 71.15 84.38 64.78 84.96 
Wt_Avg 59.41 59.97 69.49 60.65 69.8 
Macro_Avg 59.41 59.97 69.49 60.64 69.8 
ru: Radom under-sampling, ro: Random Over-sampling, smt: SMOTE, adsyn: 
ADASYN, smteen: SMOTEENN, F1:F1_score (%) 

 
  
   Table 7.8 presents the performance metrics of the model, where both the training 

and testing datasets of UNSW-NB15 were individually sampled using various methods. 

Following data preprocessing, both datasets were balanced. The Bi-LSTM model exhibited 

strong performance with hybrid sampling (SMOTEENN), achieving an F1-score of 
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69.80%, outperforming other sampling methods. Notably, the F1-score for the "worms" 

class was null during under-sampling, as under-sampling randomly deletes samples from 

the dataset. Due to the small data entries in the minority class in UNSW-NB15, the training 

data was insufficient for the Bi-LSTM models. 

TABLE 7. 9  
SAMPLING ON THE COMBINED DATA SET (TRAINING AND TESTING) AND F1-SCORE ON 

UNSW-NB15 
 

Sampling on combined data set (training and testing), train-test split, F1_score (%) on UNSW-NB 
Epochs=50, Batch_size=512, data = combine(training-set_175341+testing-set_82332) sampling 

Class F1_ru F1_ro F1_smt F1_adysn F1_smteen 
Analysis  87.76 99.17 99.99 1 99.92 
Backdoor 72.73 98.68 99.98 1 99.91 
 DoS 77.27 99.61 99.74 99.58 99.87 
Exploits 87.06 99.85 99.75 99.59 99.86 
Fuzzers 93.67 99.92 99.97 99.98 99.97 
Generic 96.63 99.97 99.97 99.99 99.99 
Normal 91.57 1 99.97 1 99.98 
Recon. 93.67 99.99 99.98 1 99.99 
Shellcode 92.5 1 99.99 1 1 
Worms 95.05 1 1 1 1 
Wt_Avg 88.69 99.93 99.93 99.91 99.95 
Macro_Avg 88.79 99.72 99.93 99.91 99.95 
ru: Radom under-sampling, ro: Random Over-sampling, smt: SMOTE, adsyn: ADASYN, smteen: 
SMOTEENN, F1:F1_score (%) 

 
  In experiment Table 7.9, the training and testing data were merged into a unified 

dataset and sampled to create a balanced dataset. Likewise, for experiment Table 7.10, the 

training dataset from UNSW-NB15 underwent preprocessing. Subsequently, trained and 

test datasets were obtained using a train-test split, and the Bi-LSTM model was trained and 

tested for both experiments [3a] and [3b]. Notably, the Bi-LSTM model achieved 

outstanding performance with an F1-score of 99.95% on the UNSW-NB15 dataset. 

 
TABLE 7. 10  

SAMPLING ON THE SINGLE DATA SET AND F1-SCORE ON UNSW-NB15 
 

Sampling on single data set, train-test split, F1_score (%) for UNSW-NB 
Epochs=50, Batch_size=512, data = training- set_175341(sampling)_ train_ test_split 
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Class F1_ru F1_ro F1_smt F1_adsyn F1_smteen 
Analysis 76.36 99.76 99.99 1 99.85 
Backdoor 70.83 99.53 99.99 1 99.85 

DoS 54.55 99.69 99.87 99.56 99.84 
Exploits 62.75 99.88 99.84 99.49 99.81 
Fuzzers 89.55 99.97 99.95 1 99.97 
Generic 96.55 99.97 99.97 99.93 1 
Normal 85.11 99.99 99.95 1 1 
Recon. 70.27 1 99.92 1 1 

Shellcode 23.53 99.78 1 1 1 
Worms 95.83 1 1 1 1 

wt._Avg 75.6 99.95 99.95 99.9 99.93 
Macro_Avg 72.53 99.86 99.95 99.9 99.93 

ru: Radom under-sampling, ro: Random Over-sampling, smt: SMOTE, adsyn: 
ADASYN, smteen: SMOTEENN, F1:F1_score (%) 

  
The individual sampling was applied to a single dataset, but this approach did not yield 

favorable results for the Bi-LSTM model. However, superior performance was achieved 

when sampling was applied directly to single files, as evidenced by Table 7.9 and Table 

7.10. 

C. Experiment-3 Class Size Vs. Bi-LSTM Model Performance  

  In experiments 1 and 2, various sampling techniques were applied during data 

preprocessing for the imbalanced NSL-KDD and UNSW-NB15 datasets. Random 

sampling played a crucial role in addressing the data imbalance issue. By working with the 

number of classes, the data imbalance problem was mitigated. This involved consolidating 

minority classes into new categories, as outlined in Table 7.1 and Table 7.2, effectively 

reducing the total number of classes. 

 

TABLE 7. 11  
CLASS SIZE VS BI-LSTM PERFORMANCE (TRAINING82332) 

 
Class Size Vs. Bi-LSTM Performance on UNSW-NB15 

Neural Network 64_50_50, Epochs=50, Batch=512, Optimizer=Adam, default 
activation function, Training_data =testing-set_82332, Testing_data = training-

set_175341 
Class Accuracy % wt_Recall % wt_F1score % Exe_time (sec) 
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2 99.88 99.88 99.88 270.47 
8 98.49 98.49 98 261.9 
9 92.01 92.01 89.34 265.05 

10 91.01 91.05 88.37 269.07 
 
  Tables 7.11 and 7.12 display the performance metrics of the Bi-LSTM model on 

the reduced number of classes in the UNSW-NB15 dataset. In both experiments, the 

training and testing datasets were swapped to assess model performance. Combining 

minority classes to create new categories resulted in improved performance. The Bi-LSTM 

model achieved an accuracy of 99.88% when the larger dataset (training set) was used for 

testing, and 95.9% when the smaller dataset (testing set) was used for testing. 

TABLE 7. 12  
CLASS SIZE VS BI-LSTM PERFORMANCE ON UNSW-NB15(TRAINING175341) 

Class Size Vs. Bi-LSTM Performance on UNSW-NB15 
Neural Network 64_50_50, Epochs=50, Batch=512, Optimizer=Adam, default activation 

function, Training_data = training-set_175341, Testing_data = testing-set_82332 
Class Accuracy % wt_Recall % wt_F1score % Exe_time (sec) 

2 95.9 95.9 95.87 409.97 
8 86.52 86.52 86.79 413.89 
9 89.88 89.88 90.25 445.99 

10 80.32 80.32 82.55 405.13 
 

By combining minority classes into new categories based on Table 7.1, the number 

of classes was reduced in the NSL-KDD dataset, resulting in improved performance shown 

in Table 7.13. The Bi-LSTM model achieved a performance metric of 96.4%. This 

reduction in the number of classes enhanced data quality by altering the data distribution 

in the multiclass dataset, consequently boosting model performance. 

TABLE 7. 13  
CLASS SIZE VS BI-LSTM PERFORMANCE ON NSL-KDD 

 
Class Size Vs. Bi-LSTM Performance on NSL-KDD 

Optimizer= Nadam(lr=0.041), Epochs=50, Batch_size= 512, Training_data = 
KDDTrain+, Testing_data = KDDTest+ 

Class  Accuracy % wt_Recall % wt_F1score % Exe_time (sec) 
2 96.39 96.39 96.4 174.35 
3 94.09 94.09 93.98 168.4 
4 91.17 91.17 90.53 179.04 

I I 
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5 89.44 89.44 89.02 189.2 
 

V. CONCLUSION  

  In conclusion, this study has addressed the challenge of class imbalance in network-

based anomaly detection using NSL-KDD and UNSW-NB15 datasets. The class imbalance 

problem presents a significant obstacle in accurately identifying anomalous activities within 

computer networks, where the abundance of normal traffic overwhelms the instances of 

anomalies. The literature review shows that the sampling techniques are used to deal with 

the data imbalance problems in anomaly detection. The above experiments [1-3] show that 

the over-sampling (ROS, SMOTE, ADSYN) and hybrid over-sampling (SMOTEENN) 

outperformed the Bi-LSTM model with the highest F1-score of 99.95% on UNSB-SW15 

while 99.97% on NSL-KDD as compared result with literature reviews sections. Our results 

conclude that the model outperformed only when the oversampling was implemented on a 

single dataset during the preprocessing stages. The sampling implemented in individually 

into training and testing two different datasets, needs more computation in feature 

engineering because the present of categorical values of data in the training testing datasets 

are not always equal which generates the different numbers of features during one hot 

encoding. Hence, the reduction of the class by creating the new types of class in the dataset 

is always the best way to deal with data imbalance problems without deleting or adding the 

random samples into the dataset rather than distributing the minority data into the new class 

to detect the anomaly in the network anomaly.
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CONCLUSION 

The application of artificial intelligence (AI) techniques for the enhancement of 

network anomaly detection has shown remarkable promise in addressing the ever-evolving 

challenges posed by malicious activities and network vulnerabilities. Throughout this 

study, we explored various AI methodologies, including machine learning algorithms, deep 

learning architectures, ensemble techniques, sampling for various combinations of train-

test datasets, and class reduction methods to deal with class imbalance network anomaly 

detection dataset and their effectiveness in detecting and mitigating network anomalies. 

In Chapter 1, we explored the heterogeneous ensemble network anomaly detection 

methods that represented a significant advancement in the field of cybersecurity. 

Throughout this study, we investigated the effectiveness of combining diverse traditional 

machine learning algorithms for the purpose of detecting and mitigating network 

anomalies. Our findings demonstrated that heterogeneous ensemble methods offer several 

advantages over single-model approaches, including improved detection accuracy and 

robustness to varying types of anomalies on network-based anomaly detection. 

In Chapter 2, the exploration of class reduction methods for imbalance Network 

Intrusion Detection datasets KDD99, UNSW-NB15, CICIDS2017, and NSL-KDD offered 

a promising avenue for addressing the challenges posed by skewed class distributions in 

network traffic data. The reduction of the class changed the distribution of the data in the 

different classes; hence, the skewed class problem was addressed to increase the anomaly 

detection performance. By addressing the challenges posed by class imbalance, these 

techniques enable NIDS to fulfill better their crucial role in safeguarding network 
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infrastructure, detecting intrusions, and preserving the confidentiality, integrity, and 

availability of critical assets and data. 

In Chapters 3 and 4, we explored hyperparameter tuning in network anomaly 

detection using deep learning techniques like Bi-LSTM and CNN-BLSTM, which is vital 

for enhancing the efficacy and robustness of detection systems in complex network 

environments. The study highlighted the significance of optimizing various 

hyperparameters, such as learning rates, batch sizes, network architectures, optimizers, and 

regularization techniques, to improve model performance. By focusing on these factors, 

we aimed to enhance the ability of deep learning models to detect and mitigate network 

anomalies effectively. 

In Chapters 5, 6, and 7, we examined different sampling techniques for network 

anomaly detection, highlighting the importance of addressing class imbalance in network 

traffic data to improve detection system performance. The study explored various methods, 

including under-sampling, oversampling, hybrid approaches, and ensemble techniques, 

and their effectiveness in mitigating the challenges posed by imbalanced datasets. By 

focusing on these techniques, we aimed to enhance the overall effectiveness of anomaly 

detection systems.  
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Fig. 8. 2 Comparison of performance for sampling vs class reduction method for NSL-
KDD. 

 

 

 

 

 

 

 

 

Fig. 8. 1 Combination of the train test data and sampling methods. 
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The machine learning or deep learning model requires the dataset to be trained and 

tested for the model evaluation. The training and testing datasets might not always be in 

separate files like the training data set and testing dataset files. Based on the availability of 

the given dataset, the various sampling methods play a vital role in determining the efficacy 

of the model we used. The in-depth exploration of the combination of sampling methods 

during the training and testing model is shown in Fig 8.1.  

  

Fig. 8. 3 Comparison of performance for sampling vs class reduction method for UNSW-
NB15 
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aggregating the minor classes into new classes, which neither delete nor generate random 

data.  

 In conclusion, performance anomaly detection can be increased by dealing with the 

selection of a model, hyperparameter selection, proper data preprocessing, and reducing 

the class size to deal with the class imbalance problem. The implementation of our models 

in the real dataset, working with adversarial attacks, and implementation of the clusters for 

transfer learning for model training and detect the network-based anomaly are future 

extensions of this work. 
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