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Abstract 
 
This paper attempted a numerical examination of the problem of unsteady free convection with 
heat and mass transfer from an isothermal vertical flat plate to a non-newtonian fluid saturated 
porous medium. The flow in the porous medium was described via the Darcy-Brinkman-
Forchheimer model. The simultaneous development of the problem of boundary layers was 
obtained numerically by finite difference method. Boundary layer and Boussinesq 
approximations had been incorporated. Numerical calculations were carried out for the various 
parameters entering into the problem. Velocity, temperature and concentration profiles were 
shown graphically and the physical quantities of the problem were given in tables.  It was found 
that as time approaches infinity, the values of friction factor, heat transfer and mass transfer 
coefficients approach the steady state values.  
 
Key words: Finite Difference Method, Non-Newtonian Power-law Fluids, Non-Darcy  
                     Porous Medium, Heat and Mass Transfers, Natural Convection 
 
AMS 2000 Subject Classification Numbers: 65N06, 76S05, 76D05 
  
 
1. Introduction 
 
A number of industrially important fluids such as foods, polymers, molten plastics, slurries and 
pulps display non-Newtonian fluid behavior. Non-Newtonian fluids exhibit a non-linear 
relationship between shear stress and shear rate. Its worth mentioning here that many of the 
inelastic non-Newtonian fluids encountered in chemical engineering processes, are known to 
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follow the empirical Ostwaled-de-Waele model or the so-called ‘‘power-law model’’ in which 
the shear stress varies according to a power function of the strain rate.  
 
The convection heat and mass transfer from surface embedded in Non-Newtonian fluids find 
several applications in geothermal engineering, petroleum recovery, filtration processes, oil 
extraction, solid matrix heat exchangers, thermal insulation, storage of nuclear waste materials, 
packed beds, porous insulation, beds of fossil fuels, nuclear waste disposal, resin transfer 
modeling, etc. Also, it is worth mentioning that non-Darcian forced flow boundary layers form a 
very important group of flows, the solution of which is of great importance in many practical 
applications such as in biomechanical problems, in filtration transpiration cooling and 
geothermal. Pascal (1992) presented similarity solutions for axisymmetric plane radial power law 
fluid flows through a porous medium. Darcy-Forchheimer natural, forced and mixed convection 
heat transfer in power-law fluid saturated porous media was studied by Shenoy (1993).  
 
The problem of forced convection heat transfer on a flat plate embedded in porous media for 
power-law fluids has been studied by Hady and Ibrahim (1997). Kinyanjui, et al. (2001) studied 
the magnetohydrodynamic free convection heat and mass transfer of a heat generating fluid past 
an impulsively started infinite vertical porous plate with Hall current and radiation absorption. 
Anwar Hossain and Wilson (2002) discussed the Natural convection flow in a fluid-saturated 
porous medium enclosed by non-isothermal walls with heat generation. Numerical modeling of 
non-Newtonian fluid flow in a porous medium using a three dimensional periodic array was 
presented by Inoue and Nakayama (1998).  
 
All these studies were concerned with steady flows. Pascal (1992) presented similarity solutions 
to some unsteady flows of non-Newtonian fluids of power law behavior. Pascal and Pascal 
(1997) studied the non-linear effects on some unsteady non-Darcian flows through porous 
media. Unsteady forced convection heat transfer on a flat plate embedded in the fluid-saturated 
porous medium with inertia effect and thermal dispersion is investigated by Wen and Hsiao 
(2002). Israel-Cookey et al. (2003) discussed the influence of viscous dissipation and radiation 
on unsteady MHD free-convection flow past an infinite heated vertical plate in a porous medium 
with time-dependent suction. Recently, Kok Siong Chiem and Yong Zhao (2004) studied the 
problem of numerical study of steady/unsteady flow and heat transfer in porous media using a 
characteristics-based matrix-free implicit FV method on unstructured grids.  
 
The purpose of this paper is to study the problem of unsteady free convection with heat and mass 
transfer from an isothermal vertical flat plate to a non-Newtonian power-law fluid saturated 
porous medium. The Darcy-Brinkman-Forchheimer model which includes the effects of 
boundary and inertia forces was employed. The dimensionless non-linear partial differential 
equations were solved numerically using an explicit finite-difference scheme. The values of 
friction factor and heat transfer coefficient were determined for steady and unsteady free 
convection. 
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2. Mathematical formulation 

Consider the unsteady, laminar boundary layer in a two-dimensional natural convective flow of a 
non-Newtonian fluid over a vertical flat plate embedded in a porous medium with heat and mass 
transfer (see Figure 1). At time 0t , the temperature of the surface immersed in a fluid is raised 
suddenly from that of surrounding fluid T , up to a higher and constant value wT  and kept at this 

value thereafter. Also, C  is the species concentration in the fluid far away from the plate and 

wC  the species concentration at the plate. Under the Boussinesq and boundary layer 

approximations, the governing mass, momentum, concentration and energy conservation 
equations become: 
 

0
y

v

x

u





                                                                                                                    (1) 

 

,P
y

u
v

x

u
u

t

u


















  

 
where 
 

  ,
KK

)(
1

1/2

2
1

1

uu
k

F
uu

y

u

y

u

y
gP

k

n
nn









  



 

 
and 
  

 )()( *
  CCTT  .       

 
Then, 

  

*

1 2
1

1/2

( ) ( )

( )-
K K

n n
n

u u u
u v g T T g C C

t x y

k u u k F
u u u u

y y y

    
  

    
    

 




     

 

   (2) 

 
 

2

2

2

2

y

C

cc

kD

y

T

c

k

y

T
v

x

T
u

t

T

ps

Tm

p

f
















                                                                 (3) 

 

2

2

2

2

y

T

T

kD

y

C
D

y

C
v

x

C
u

t

C

m

Tm
m 














                                                                   (4) 

 

3

Elgazery: Transient Analysis of Heat and Mass Transfer (Numerical Study)

Published by Digital Commons @PVAMU, 2008



270                                                                                                                                     Nasser S. Elgazery 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
In the previous equations,  vu ,  are the velocity components along x  and y  axis. The 

temperature of the surface is wT  and far away from the surface this value is invariant and is 

represented by T . Also, the concentration of the surface is wC  and far away from the surface this 

value is invariant and is represented by C .  P is the pressure. *,,   are the density, the 
volumetric coefficient of thermal expansion and the coefficient of expansion with concentration, 
respectively. KF ,,  are the porosity, the empirical constant and the permeability, respectively. 

gckk pf ,,,  are the non-Newtonian consistency index, the fluid thermal conductivity, the fluid 

specific heat and the acceleration due to gravity, respectively. mmTs TDkc ,,,  are the 

concentration susceptibility, the fluid thermal diffusion ratio,  the coefficient at mass diffusivity 
and the mean fluid temperature, respectively.  
 
The initial and boundary conditions are:  
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In this study, in accordance with previous work reported by Shulman et al. (1975) and Shvets 
and Vishnevskeiy (1987) the following transport properties based on the power-law model are 
assumed to hold  

Figure 1. Coordinate system for the physical model of the problem. 
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where ij  and ije are the tensors of stress and strain rate, ij  is the unit tensor, I2 is the second 

invariant of the strain rate, p is the pressure and n is the power flow behavior index of the fluid (n 
> 0). For n = 1, it reduces to a Newtonian fluid, for values of n < 1 the behavior is pseudoplastic 
and, when n > 1, the fluid is dilatant.  
 
The Ostwaled-de-Waele power-law model represents several non-Newtonian fluids of practical 
interest and therefore has been used in this paper. Christopher and Middleman (1965) and 
Dharmadhikari and Kale (1985) proposed the following relationships for the permeability as a 
function of the power law index n as follows: 
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where d is the particle diameter while  is the porosity. When n  1the model describes 
pseudoplastic behavior, whereas n  1represents dilatant behavior. 
 
We introduce the following dimensionless variables (see El-Amin (2003)): 
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where 2/1]/[  nn kLU   is the reference velocity and  L is a suitable length scale. 

 
Introducing expressions (7) into equations (1) - (4) we have the transformed equations in the 
following form: 
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where  
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The initial and boundary conditions are now given by: 
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In technological applications, the wall shear stress and the local Nusselt number are of primary 
interest.  
 
The wall shear stress may be written as: 
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Therefore, the local friction factor is given by 
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From the definition of the local surface heat flux is defined by 
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where, 
fk  is the thermal conductivity of the saturated porous medium, together with the 

definition of the local Nusselt number 
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Finally the local surface mass flux is defined by 
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Therefore, the local Sherwood number is given by 
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3. Numerical Method 

 

The numerical integrations were carried out on the time dependent form of the nonlinear partial 
differential equations (8) - (11), with initial and boundary conditions (12) by the explicit finite-
difference method, as explained by Carnahan et al. (1969). The spatial domain under 
investigation was restricted to finite dimensions. Here, the length of the plate Xmax was assumed 
to be 2.4 and the boundary layer thickness Ymax was taken as 1.28. The region to be examined in 
(x, y, t) space is covered by a rectilinear grid with sides parallel to axes with t,y,x   the grid 
spacing in x, y and t directions respectively.  
 
The grid point (x, y, t) are given by ),,( tmyjxi   where the velocities, temperature and 
concentration fields were calculated for various time steps for a 3024   grid. The grid sizes are 
taken as 1.0x , 008.0y  at 4)1(1j , 01.0y at 5j , 014.0y at 6j , 

016.0y  at 8,7j , 024.0y  at 9j ,  048.0y  at 10j ,  056.0y  at 
30)1(11j  and 05.0t .  An examination of complete results for m=10, 20, 30, …, 130, 150 

or (t = 0.5,  1, 1.5,…, 6.5, 7.5) revealed little or no change in u, v,   and   after m = 100 (t = 5) 
for all computations. Thus the results for t = 6.5 are essentially the steady-state values.  
 
Notice that, the uniform scheme in x and t directions and non-uniform scheme in direction of y 
are used for solving this problem. 
 
Consider  , vu  ,   and  denote the values of u, v ,   and   at the end of a time-step. Then, 
the approximate set of finite difference equations corresponding to equations. (8)-(11) are 
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where, primed variables indicate the values of the variables at a new time and (i, j) represent grid 
points. The coefficients ui,j and vi,j in equations  (20), (21) and (22) are treated as constants, 
during any one time-step. Then, at the end of any time-step t , the new velocity components u , 

 v , the new temperature  and the new concentration  at all interior grid points may be 
obtained by successive applications of  (19) - (22), respectively. This process is repeated in time 
and provided the time-step is sufficiently small, u, v,   and   should eventually converge to 
values which approximate the steady state solution of equations (19) - (22).  
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                                              (23) 

 

4. Results and Discussion  

The numerical computations were done by the symbolic computation software 
MATHEMATICA 5.2TM. The command (NSolve) was used to solve the linear systems (19) – 
(22) with the boundary condition. Computations are carried out until the steady-state solution 
used have been reached when the absolute difference between the values of velocity and 
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temperature as well as concentration at two consecutive time steps is less than 510 at all grid 
points.  
 
Details of the velocities, temperature and concentration fields were presented in curves and 
tables 1, 2 for various values of the time and the parameters of the problem, e.g. the inertia 
coefficient Fr and the Reynolds number Re. Figure 2 to Figure 11 presented fully numerical 
results for the velocity and temperature profiles as well as the concentration distributions. A 
selection set of results have been obtained covering the ranges  10000  Fr , 10001.0  Da , 

001.0001.0  Gr , 005.0005.0  Gr  and 10Re1   at Sr = 0.1,  Sc = 7, fD  = 0.12, 

Pr = 10 and n = 2 (the fluid is dilatant). Figure 2 - Figure 4 showed the transient profiles of 
velocity u and v and temperature   as a function of y for various values of t, respectively at Re = 
1, ,1,10  DaFr  001.0Gr , 005.0Gr  , Pr = 10, Sr = 0.1,  Sc = 7, fD  = 0.12 and n = 2.   

 
It can be seen from these figures that, after certain times the distribution of the velocities and 
temperature are affected by its position from y. However, the velocity –v growths as y increases 
from the origin point to the leading edge, while the opposite is true for the temperature. Also, the 
time enhances the velocities u and –v and temperature , and after advancing time steps the 
effect of time on them tends to disappear. This means that unsteady-state tends to approach 
steady-state.   
 

Steady velocity profiles u and -v as functions of y (plate length) for various values of the inertia 

coefficient Fr were illustrated in Figures 5 and 6, respectively at Re = 1, ,1Da  001.0Gr , 

005.0Gr , Pr = 10, Sr = 0.1,  Sc = 7, fD  = 0.12, n = 2 and t = 6.5 (steady state).  It is 

noteworthy that, the inertia coefficient Fr reduces the velocity v while it has a slight effect on the 
velocity u (large values of Fr have an essential effect on the velocities).  
 
In Figures 7 - 10, the velocity profiles and the temperature profiles as well as the concentration 
distributions as functions of y for various values of Re (in the steady state) are plotted, 
respectively at  ,1,10  DaFr  001.0Gr , 005.0Gr  , Pr = 10, Sr = 0.1,  Sc = 7, fD  = 

0.12 and n = 2. From these figures one can note that, all of these distributions decrease as Re 
increases. This is expected since the decreasing of the Reynolds number Re causes the thermal 
boundary layer to become thicker and the fluid to be warmer.  
 
Figure 11 describes the behavior of the velocities, temperature and concentration distributions (in 
the steady state) in three dimension profiles at Re = 1, ,1,10  DaFr  001.0Gr , 

005.0Gr ,  Pr =10, Sr = 0.1, Sc = 7, fD  = 0.12 and 2n (dilatant fluid).  

 

Table 1 represents the variation of transient friction factor 
2

fC
, Nusselt number Nu and 

Sherwood number Sh for dilatant fluid (n > 1) with various values of the time and inertia 
coefficient Fr at Re = 1, ,10Da  0002.0Gr , 001.0Gr , Pr = 10, Sr = 0.1,  Sc = 7, fD  = 

0.12 and n = 2. It can be seen that the friction factor increases as time increases until approach 
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steady state, while the heat transfer rate in terms of Nusselt number and the mass transfer rate in 
terms of Sherwood number are reduced with increasing of time.   
 
Also, from this table, it can be seen that due to an increase in Fr there is a fall in the Nusselt 
number and the Sherwood number, while due to an increase in inertia coefficient Fr there is an 
increase in the wall shear stress. Finally, in table 2 the friction factor, the Nusselt number and the 
Sherwood number values are presented for different values of the Darcy number Da , the local 
temperature Grashof number Gr  and the local mass Grashof number Gr , respectively at Re=1, 

,10Fr  Pr = 10, Sr = 0.1,  Sc = 7, fD  = 0.12 , n = 2 (for dilatant fluid) , t = 1.5  (in the 

unsteady state)  and x = 0.1. The friction factor, the heat transfer rate in terms of Nusselt number 
and the mass transfer rate in terms of Sherwood number increase as Da increases.  
 
The effect of the Darcy number Da becomes smaller as Da increases. Physically, this result can 
be achieved when the holes of the porous medium are very large so that the resistance of the 
medium can be neglected. On the other hand, the local temperature Grashof number Gr  

represents the effects of free convection currents. Since the free convection currents are in 
existence, )( TTw  may be positive, zero or negative. Hence, the free convection parameter 

(Grashoff number) 
2

)(

U

TTLg
Gr w 




  assumes positive, zero or negative values. Physically, 

0Gr  corresponds to heating of the fluid (or cooling of the surface), 0Gr  corresponds to 

cooling of the fluid (or heating of the surface) and 0Gr  corresponds to the absence of the free 

convection currents. From this table one can note that, the local friction factor in equation (14) is 
negative in the fluid cooling case ( Gr -0.001, -0.0005 and -0.0002). Physically, this is possible 

because the flow of the fluid moving in the upward direction is now being opposed by the free 
convection currents and hence the velocity decreases. Thus, the flow of the fluid is of reverse 
type in the fluid cooling case.   
 
Also from this table, it can be seen that due to an increase in the local temperature Grashof 
number Gr  and the local mass Grashof number Gr , there is an increase in the friction factor, 

the Nusselt number and the Sherwood number. 
 

6. Conclusions 

 
The finite difference method was used in this paper to compute unsteady natural convection with 
heat and mass transfer from an isothermal vertical flat plate to a non-Newtonian fluid saturated 
porous medium, which was modeled as a power-law fluid. Boundary layer and Boussinesq 
approximations had been introduced together with the Darcy-Brinkman-Forchheimer model to 
describe the flow field. Numerical calculations were carried out for the various parameters 
entering into the problem. Velocity, temperature and concentration profiles were shown 
graphically and the physical quantities of the problem were given in tables.  It was found that as 
time approaches infinity, the values of friction factor, heat transfer and mass transfer coefficients 
approach the steady state values. 
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Table 1: Transient friction factor 
2

fC
 , Nusselt number Nu and Sherwood number Sh for various values of  t and 

Fr when Pr = 10, Sr = 0.1,  Sc = 7, fD  = 0.12, n = 2,   

Gr  = 0.0002, Gr  = 0.001and Da = 10 at x = 0.1. 

t 2/Cf
410  Nu  Sh  

 Fr =0.0 Fr=100 Fr=1000 Fr=0.0 Fr=100 Fr=1000 Fr=0.0 Fr=100 Fr=1000 

0.5 0.1329 0.6535 0.7114 13.7637 13.7225 13.3940 13.7679 13.7661 13.7493 

2.0 0.9561 0.9562 0.9565 12.6107 12.6106 12.6103 12.8335 12.8334 12.8331 

4.0 1.2447 1.2448 1.2449 11.3076 11.3073 11.3051 11.7092 11.7090 11.7071 

5.0 1.2955 1.2956 1.2957 10.6321 10.6320 10.6317 11.6256 11.6253 11.6223 

6.0 1.3890 1.3895 1.3930 10.4545 10.4544 10.4535 10.9973 10.9972 10.9964 

6.5 9.7805 10.308 17.222 9.5680 9.5665 9.5513 10.5581 10.5579 10.5566 

  9.7805 10.308 17.222 9.5680 9.5665 9.5513 10.5581 10.5579 10.5566 

Table 2: The friction factor 
2

fC
,  Nusselt number Nu and Sherwood number Sh for different values of  Da, Gr  

and Gr  when Sr = 0.1, Sc = 7, fD  = 0.12, Re = 1, n = 2, Fr  =10, Pr = 10 and t = 1.5 at x = 0.1. 

Da 
Gr  Gr  2/Cf

410  Nu  Sh  

0.1 0.0002 0.001 0.83401935300 12.98447391869 13.15162736906 

1.0   0.83403652798 12.98447392039 13.15162737051 

10   0.83403824551 12.98447392056 13.15162737066 

100   0.83403841726 12.98447392058 13.15162737068 

1000   0.83403843444 12.98447392058 13.15162737068 

      

1.0 -0.001 0.001 -0.0068725020 12.98439789733 13.15156205198 

 -0.0005  -0.0009604872 12.98444326492 13.15160102994 

 -0.0002  -0.00001445515 12.98445837635 13.15161401429 

 0.0  0.74928377348 12.98446659597 13.15162107699 

 0.0002  0.83401935300 12.98447391869 13.15162736906 

 0.001  1.10997579050 12.98449795091 13.15164801892 

      

1.0 0.0002 -0.001 -0.65376079951 12.98435584981 13.15152592396 

  0.0 0.34942311552 12.98443267696 13.15159193248 

  0.001 0.83403652798 12.98447392039 13.15162737051 

  0.005 1.20002650210 12.98455425091 13.15169639448 
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Nomenclature 
Cf friction factor F empirical constant 
Cp specific heat N power-law index 
D pore diameter Gr local temperature Grashof number

g acceleration due to gravity Gr local mass Grashof number 
K Permeability Symbols
k non-Newtonian consistency index   dimensionless temperature 

fk  thermal conductivity of fluid  dimensionless concentration 

wq  , wQ  heat transfer coefficient and mass 
transfer coefficient 

w  wall shear stress 

t  time 
ij  stress tensor component 

T dimensionless time 
ije  strain rate tensor component 

T  Temperature   coefficient of thermal expansion 

C  Concentration *  coefficient of expansion with 
concentration 

vu  ,  dimensionless velocity components  dynamic viscosity 
u, v velocity components  density of the fluid 
x y,   space coordinates   porosity 
x, y dimensionless space coordinates Subscripts
Nu Nusselt number w wall 
Sh Sherwood number  infinity 
Pr Prandtl number   
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Figure 11. The velocities, temperature and concentration distributions. 
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