
Prairie View A&M University Prairie View A&M University

Digital Commons @PVAMU Digital Commons @PVAMU

All Dissertations Dissertations

8-2020

Fake News Detection in Social Media Using Machine Learning and Fake News Detection in Social Media Using Machine Learning and

Deep Learning Deep Learning

Chandra Mouli Madhav Kotteti
Prairie View A&M University

Follow this and additional works at: https://digitalcommons.pvamu.edu/pvamu-dissertations

Recommended Citation Recommended Citation
Kotteti, C. M. (2020). Fake News Detection in Social Media Using Machine Learning and Deep Learning.
Retrieved from https://digitalcommons.pvamu.edu/pvamu-dissertations/4

This Dissertation is brought to you for free and open access by the Dissertations at Digital Commons @PVAMU. It
has been accepted for inclusion in All Dissertations by an authorized administrator of Digital Commons @PVAMU.
For more information, please contact hvkoshy@pvamu.edu.

https://digitalcommons.pvamu.edu/
https://digitalcommons.pvamu.edu/pvamu-dissertations
https://digitalcommons.pvamu.edu/dissertations
https://digitalcommons.pvamu.edu/pvamu-dissertations?utm_source=digitalcommons.pvamu.edu%2Fpvamu-dissertations%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/pvamu-dissertations/4?utm_source=digitalcommons.pvamu.edu%2Fpvamu-dissertations%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu

FAKE NEWS DETECTION TN SOCIAL MEDIA USTNG MACHINE LEARNING

AND DEEP LEARNING

A Dissertation

by

CHANDRA MOUL! MADHA V KOTTETl

Submitted to the Office of Graduate Studies of
Prairie View A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2020

Major Subject: Electrical Engineering

FAKE NEWS DETECTlON IN SOCIAL MEDIA USING MACHINE LEARNING

AND DEEP LEARNING

A Dissertation

by

CHANDRA MOULI MADHAV KOTTETI

Submitted to the Office of Graduate Studies of
Prairie View A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

A roved as to st le and content by:

Lijun Qian
Committee Chair

Xiangfang Li
Committee Member

Na Li

Xishuang Dong

Pamela H. Obiomon, Dean
Roy G. Perry College of Engineering

August 2020

Major Subject: Electrical Engineering

ABSTRACT

Fake News Detection in Social Media Using Machine Leaming and Deep Learning

(August 2020)

Chandra Mouli Madhav Kotteti, Master of Science in Applied Computer Science,

Northwest Missouri State University;

Bachelor of Technology in Electrical and Electronics Engineering, Koneru

Lakshmaiah College of Engineering;

Chair of Advisory Committee: Dr. Lijun Qian

Fake news detection in social media is a process of detecting false information that is

intentionally created to mislead readers. The spread of fake news may cause social,

economic, and political turmoil if their proliferation is not prevented. However, fake

news detection using machine learning faces many challenges. Datasets of fake news

are usually unstructured and noisy. Fake news often mimics true news. In this study,

a data preprocessing method is proposed for mitigating missing values in the datasets

to enhance fake news detection accuracy. The experimental results show that Multi­

Layer Perceptron (MLP) classifier combined with the proposed data preprocessing

method outperforms the state-of-the-art methods.

Furthermore, to improve the early detection of rumors in social media, a time­

se1ies model is proposed for fake news detection in social media using Twitter data.

With the proposed model, computational complexity has been reduced significantly

in terms of machine learning models training and testing times while achieving sim­

ilar results as state-of-the-art in the literature. Besides, the proposed method has a

simplified feature extraction process, because only the temporal features of the Twit-

111

ter data are used. Moreover, deep leaming techniques are also applied to fake news

detection. Experimental results demonstrate that deep learning methods outper­

formed traditional machine learning models. Specifically, the ensemble-based deep

learning classification model achieved top performance.

IV

D EDICATION

To my mother JAY ALAKSHM1 MULAGADA, and

To my guru late ' BRAHMA SHRI' SRINIVASA RAO YELLAMRAJU.

V

ACKNOWLEDGMENTS

l am most fortunate to have been born to Mrs. Jayalakshmi Mulagada. She is

the one I adore the most. She has done many good things for me, which I cannot

express in mere words. I have seen her making significant sacrifices many times

for my prosperity, well-being, and happiness. Her fighting spirit towards life and

mannish deeds are second to none, and 1 will wholeheartedly cherish her efforts for a

lifetime. I can proudly say that I would not even be in the position where l am now

without her.

I am immensely thankful to Nature for giving me a chance to do discipleship

under my guru late 'Brahma Shri' Srinivasa Rao Yellamraju. His influence in my life

has made me perceive the world from a whole new dimension that helped me come

out of several tough phases in my past. Should for any reason and at any point in

my life I am happy, then his contribution is always there in my happiness.

I am grateful to my academic adviser Dr. Lijun Qian for his outstanding support,

encouragement, and timely advice throughout my doctoral degree. He helped me in

expanding my knowledge boundaries and grow as an independent researcher. His

knowledge, experience, and technical advice were hugely instrumental in the success

of this study.

I am forever indebted to Dr. Na Li, who has always been a wonderful mentor

and who laid a robust foundation for my doctoral program. Her influence on my

academic journey is extremely special and phenomenal to me. As a student, working

with her was a great opportunity for me to learn, practice, and achieve great heights,

both academically and professionally.

I am thankful to my doctoral degree committee, namely, Dr. Lijun Qian, Dr.

VI

Kelvin Kirby, Dr. Xiangfang Li, Dr. Xishuang Dong, and Dr. Na Li, for their

immense support at all times during my doctoral program in the Department of

Electrical and Computer Engineering at Prairie View A&M University. I thank Dr.

Matthew N. 0. Sadiku, Dr. Richard Wilkins, and other faculty members and staff for

their kindness, teaching, and educational support. I give special thanks to the U.S.

Office of the Under Secretary of Defense for Research and Engineering for sponsoring

this study.

l am profoundly grateful to all my family members and relatives, especially, the

late Chinnamma Mulagada, tbe late Yenkanna Mulagada, the late Durga Rao Mu­

lagada, Appa Rao Mulagada, Sudhakara Rao Mulagada, Padmavathi Mulagada, the

late Tanuja Mulagada, the late Sreedhar Mulagada, and the late Someswara Rao

Mulagada for their incredible love towards me and my friends Venkatesh, Praveen

Pullagoru, Bhanu Chandan, Reese Hammond, Dinesh Valishetty, Krishna Adoni and

others for always being there for me. My appreciation is also extended to all my col­

leagues and friends at CREDIT Center, Prairie View; thank you for the great times

that we have shared. Finally, I sincerely admire all those individuals with whom l

have interacted and traveled. Their presence in my life helped me to enhance my

wisdom levels.

The research work contained m this study is supported in part by the U.S. Of­

fice of the Under Secretary of Defense for Research and Engineering (OUSD(R&E))

under agreement number FA8750-15-2-0l 19. The U.S. Govemment is authorized to

reproduce and distribute reprints for governmental purposes notwithstanding any

copyright notation thereon. The views and conclusions contained herein are those of

the authors and should not be interpreted as necessarily representing the official poli­

cies or endorsements, either expressed or implied, of the Office of the Under Secretary

of Defense for Research and Engineering (OUSD(R&E)) or the U.S. Government.

vii

API

ANN

BOL

Bi-RNN

CF

CFT

CNN

OT

OFT

OSTS

FN

FP

GRU

GNB

HARNN

HSI

K-MPLC

NOMENCLATURE

Application Program Interface

Artificial Neural Network

Bagging Dictionary Leaming

Bi-directional Recurrent Neural Network

Characteristic Feature

Characteristic Feature Tree

Convolutional Neural Network

Decision Trees

Density Functional Theory

Dynamic Series-Time Structure

False Negative

False Positive

Gated Recurrent Unit

Gaussian Naive BayesClassifier

Hierarchical Attention RNN

Hyperspectral Image

K-Mixture of Product Lifecycle

LinearSVC Linear Support Vector Classification

LR Logistic Regression

LSTM Long Short-Term Memory

ML Machine Leaming

VI

MNRD Merged Neural Rumor Detection

MAR Missing at Random

MCAR Missing Completely at Random

MNAR Missing Not at Random

MLP Multi-Layer Perceptron

NN Neural Network

NNE Neural Network Ensemble

Nu-SVC Nu-Support Vector Classification

PES Periodic External Shocks

PLC Product Life Cycle

RF Random Forests

RDL Random Subspace Dictionary Learning

RNN Recurrent Neural Network

ResNET Residual Network

RMS Root Mean Square

SBCB Selecting Base Classifiers on Bagging

SVC C-Support Vector Classification

SVM Support Vector Machines

TF-IDF Term Frequency and Inverse Document Frequency

TN True Negative

TP Tme Positive

URL Uniform Resource Locator

Vil

TABLE OF CONTENTS

Page

ABSTRACT .. 111

DEDICATION ··· V

ACKNOWLEDGMENTS ... vi

NOMENCLATURE .. vi

TABLE OF CONTENTS .. viii

LIST OF FIGURES .. xi

LIST OF TABLES ... xiii

1. INTRODUCTION .. I

I. l Research Background .. 1
1.2 Fake News Detection ... 2

1.2.1 Definition .. 2
1.2.2 Impacts of Fake News .. 2
l.2.3 Fake News and Rumors ... 3
1.2.4 Detection Methods 3

1.3 Challenges and Proposed Solutions .. 6
1.3. 1 Problems Considered and Challenges ... 6
1.3.2 Proposed Solutions and Contributions ... 7

1.4 Outline of the Study .. 9

2. LITERATURE REVIEW ... 10

3. FAKE NEWS DETECTION ENHANCEMENT WITH DATA IMPUTA-
TION 13

3.1 LIAR Dataset. 14
3 .2 Proposed Methodology .. 15

3.2.1 Data Pre-processing 15
3.2.2 Model .. 17

3.3 Experiment 19

3.3.1 Delete Records Containing Missing Values .. 19
3.3.2 Replace Missing Values with Empty Text ... 19
3.3.3 Impute Missing values Using Data Imputation Techniques 22

3.4 Concluding Remarks for the Chapter ... 25

4. MULTIPLE TIME-SERIES DATA ANALYSIS FOR FAKE NEWS
DETECTION IN SOCIAL MEDIA 29

4.1 Methodology 30
4.1.1 Problem Definition .. 30
4.1.2 Data Preparation and Analysis .. 30
4.1.3 Machine Learning (ML) Models .. 34

4.2 Experimental Results ... 42
4.2. l Datasets 42
4.2.2 Evaluation Metrics ... 43
4.2.3 Results 44
4.2.4 Discussions ... 45

4.3 Concluding Remarks for the Chapter ... 49

5. RUMOR DETECTION ON TIME-SERIES OF TWEETS VIA DEEP
LEARNING 50

5.1 Rumor .Detection Task .. 51
5.1.1 Problem Definition .. 51
5.1.2 Dataset 52

5.2 Deep Learning Models ... 53
5.2.1 LSTM .. 54
5.2.2 GRU .. 54
5.2.3 Bi-RNN 55
5.2.4 CNN .. 55

5.3 Experiment 56
5.3. l Time-series Data Generation 56
5.3.2 Training Deep Learning Models .. 57

5 .4 Results and Discussions 61
5.4. l Effect of Time Intervals 61
5.4.2 Effect of Neural Network Models ... 62
5.4.3 Effect of Test Events .. 63
5.4.4 Other Observations .. 64

5.5 Concluding Remarks for the Chapter ... 67

6. ENSEMBLE DEEP LEARNING ON TIME-SERIES REPRESENTATION
OF TWEETS FOR RUMOR D ETECTION fN SOCIAL MEDIA 68

6.1 Problem Formulation 69

lX

6.1.1 Rumor Detection . 69
6.1.2 General Features of Tweets 70
6.1.3 Feature Extraction . 70

6.2 Ensemble Learning . 70
6.2.1 O verview of Ensemble Learning 70
6.2.2 Bagging Learning . 7 1
6.2.3 Deep Bagging Learning 73
6.2.4 Overview of the Proposed Model 74

6.3 Methodology . 74
6.3. l Neural Networks Models Considered 75
6.3.2 Implementation-I . 77
6.3.3 Implementation-II. 79
6.3.4 Implementation-III. 79

6.4 Dataset . 79
6.4. l PHEME Dataset . 79
6.4.2 Generation of Time-se1ies Data. 80
6.4.3 Data Pre-processing . 83

6.5 Experimental Analysis . 85
6.5.1 Evaluation Metrics . 85
6.5.2 Experimental Results. 86
6.5.3 Discussions . 97

6.6 Concluding Remarks for the Chapter 98

7. CONCLUSIONS AND FUTURE WORK 99

7. l Conclusions 99
7.2 Future Work 101

REFERENCES 102

VlTA .. 111

X

LIST OF FIGURES

FIGURE Page

3.1 A snapshot of LIAR dataset.. .. 16

3.2 Training loss curves of the MLP classifier .. 28

4.1 Event Charlie Hebdo propagation patterns for different time intervals 35

4.2 Event Ferguson propagation patterns for different time intervals 36

4.3 Event Germanwings Crash propagation patterns for different time
intervals 37

4.4 Event Ottawa Shooting propagation patterns for different time intervals 38

4.5 Event Sydney Siege propagation patterns for different time intervals . 39

4.6 Multiple time-series data analysis model.. .. 42

5.1 The structure of a Twitter conversation sample .. 52

5.2 Shows the data distribution of the PHEME dataset 53

5.3 Shows the time-series datasets distribution after removal of duplicates 60

5.4 5-fold mean validation accuracy scores of neural network models
across T 62

6.1 Shows the proposed model for rumor classification taking Twitter
conversations as input, which are cleaned in the data pre-processing
block and fed as input to the ensemble model that performs the
majority voting to determine the final prediction 74

6.2 Structure of a Twitter conversation sample ... 81

6.3 The flow chrut for transforming Twitter conversations into time-series
vectors .. 84

LIST OFT ABLES

TABLE Page

3.1 The training time of different classifiers with the delete method . 20

3.2 Performance results on the validation set with the delete method . 20

3.3 Performance results on the test set with the delete method 21

3.4 The training time of different classifiers with the replace method 21

3.5 Performance results on the validation set with the replace method 22

3.6 Performance results on the test set with the replace method 23

3.7 The training time of different classifiers with the data imputation
method .. 24

3.8 Performance results on the validation set with the data imputation
method .. 24

3.9 Pe1fonnance results on the test set with the data imputation method 25

3.10 Performance of the MLP classifier. ... 26

3.11 MLP classifier perfo1mance results on the validation set 26

3.12 MLP classifier performance results on the test set 27

4.1 PHEME dataset of rumors and non-rumors ... 33

4.2 Training and testing sets obtained using 5-fold cross-validation 43

4.3 Sample results for individual time intervals .. 46

4.4 Shows the experimental results with each event as a test set 47

4.5 Micro-averaged results 48

5.1 5-fold cross-validation train and test sets proportions for all values of T 59

Xll

5.2 NN models' hyperparameter settings .. 61

5.3 NN models' validation results for T= 2 min (values are given in [O - 1]) 64

5.4 Micro-averaged testing results in Fl scores ... 66

5.5 Macro-averaged testing results in FI scores ... 66

5.6 Comparing cu1Tent study with baselines ... 67

6.1 Configurations of NN models .. 78

6.2 The PHEME dataset with nine events ... 80

6.3 Distribution of the PHEME dataset with seven events 82

6.4 Comparison of current study to Kotteti's previous studies 87

6.5 Shows the mean micro averaged F I testing results of all events that
were obtained using leave-one-event-out cross-validation across T by
varying learning rate .. 88

6.6 Shows the mean macro averaged F 1 testing results of all events that
were obtained using leave-one-event-out cross-validation across T by
varying learning rate .. 89

6. 7 Shows the mean micro averaged F 1 testing results of all events that
were obtained using leave-one-event-out cross-validation across T by
the varying batch input size .. 92

6.8 Shows the mean macro averaged F 1 testing results of all events that
were obtained using leave-one-event-out cross-validation across T by
varying the batch input size .. 93

Xlll

1

CHAPTERl

INTRODUCTION

1.1 Research Background

In this digitalized world, the proliferation of information through social media

has become quite easy. For example, anyone can instantly create and spread a piece

of information with ease using a smartphone. The time people use to consume news

through Television and newspapers has almost reached its culmination point because

of social media' s power. lt is not hyperbole if it is said that social media has become

the p1imary source for news consumers, but the biggest problem with the news on

social media is the news veracity. Social media news is a mix of both genuine and

false information. No worries exist if the news is genuine and correct; however, in the

case of news being incorrect, it may cause social, economic, and political turmoil. In

the case of time-critical events, the effects may be dreadful.

Nowadays, people rely more on social media services than traditional media be­

cause of its advantages, such as social awareness, education, research, global con­

nectivity, real-time sharing of digital information, etc. Over the years, social media

users have been increasing more in number. They play a prominent role in building

social media networks to communicate with each other, establish new relationships,

or share feelings. Even though social media services are helpful in many ways, it, too,

has its disadvantages. Some of the critical social media problems are: cyberbullying,

hacking, and information privacy and security.

This dissertation follows the style of the IEEE journal Machine Leaming With Big
Data: Challenges and Approaches.

2

Social media has become a fast and easy way to proliferate news across the world,

and they make news readily available for news consumers. However, fake news on

social media has been proliferated for personal or social benefits. According to [1] ,

false info1mation has two forms: misinformation (incorrect info1mation) or disinfor­

mation (information that is used to deceive its consumers). Fake news is typically

a piece of false information in nature, where its primary purpose is to deceive or

mislead readers. It has many similarities with spam messages since they share com­

mon features such as grammatical mistakes and false information, using a similarly

limited set of words. They contain emotionally colored information that affects the

reader' s opinion [2]. How to detect false information effectively and efficiently on

social media is a challenging problem.

1.2 Fake News Detection

The definition of fake news, its impact, control, detection, etc, are discussed next.

1.2.1 Definition. Fake news consists of intentionally and verifiably false in­

formation with a motive to mislead readers [3]. Detecting fake news is a layered

process that involves the analysis of the news contents to determine the truthfulness

of the news. The news could contain information in various fo1mats such as text,

video, image, etc. Combinations of different types of data make the detection process

difficult.

1.2.2 Impacts of Fake News. The proliferation of fake news may have a

huge impact on society. As the contents of fake news are deliberately false, fake

news can be used for personal benefits, financial and political gai~ and to spoil the

reputation of a company, or person. The severity of the impact caused by fake news

depends highly on the news creation time and situation, who created the news and

his/her social status, and the social media platform used. If fake news propagation

3

is not prevented in the early stages, society may face unfavorable consequences.

1.2.3 Fake News and Rumors. Fake news is mainly intended to mislead

readers, whereas a social media rumor is a piece of information that is not verified

for its truthfulness at the time of posting. Zubiaga et al. [4] defined a rumor as a

circulating story of questionable veracity, which is apparently credible but hard to

verify and produces sufficient skepticism and/or anxiety. A rumor might be true,

partially true, or false, but fake news is a deliberate lie that mimics actual news.

A rumor is capable of spreading misinformation or disinformation (5, 6]. Fake news

detection could be performed using similarities between fake news and rumor [7].

Many methods have been proposed for detecting rumors in social media [8, 9, 10, 11].

Typically the rumor detection problem is formulated as a classification problem, such

as a binary one (rnmor or non-rwnor).

1.2.4 Detection Methods. Fake news detection methods using a variety of

features are discussed here.

1.2.4.1 Content-based. Traditional fake news detection methods rely

heavily on fake news content. In [12], they present early detection of rumors in social

media based on identifying signature text phrases in social media posts, for example,

" Is this true?, Really?"'. In [1 3], they propose an automatic mechanism for fake news

classification using four important processes, i.e., extracting features for prediction

accuracy, dataset alignment, per-set feature selection, and evaluating model transfer.

1.2.4.2 Context-based. Only news content is not adequate to enhance

the existing fake news detection algorithms. This reason opens the gates for the

necessity of auxiliary information, such as a user's social engagements on social media

for the better detection of fake news [3]. The network strncture of the news could

also help identify fake news [14].

4

1.2.4 .3 Propagation Patterns. Fake news detection could be addressed

based on propagation patterns of fake news as well. Ma et al. [15] used the propa­

gation structure technique for the rumor detection problem. They used propagation

trees to identify clues on how an original message is spread over time. Ma et al.

[16] automatically detected deep data representations for the enhancement of rumor

detection. Their experiments focused on using variations in the contextual infonna­

tion of relevant posts over time for rumor detection instead of manually extracted

features.

Temporal features play a crucial role in the fast-paced social media environment

because information spreads more rapidly than traditional media. Many researchers

have used temporal features of social media to design a model that can quickly

verify news on social media. Hashimoto et al. [17] proposed a framework for rumor

information detection on social media. It relies on graph structure visualization of

social media messages and capturing graph topology changes over time to identify

fast-spreading rumor candidates and to verify them with the reliable sources such as

TV programs and newspapers to confirm their reliability.

Chang et al.'s work [18, 19] focused on buzz modeling, which means detecting

a burst of topics on social media that captures the variations (i.e., sudden spikes

and heavy tails) in temporal patterns of buzz time-series sequences via Product Life

Cycle (PLC) models and uses a graph model K-Mixture of Product Lifecycle (K­

MPLC) to detect lifecycle patterns of buzzes automatically. Buzz modeling could

help prevent malicious rumor spreading.

ln [20], Twitter data's temporal, structural, and linguistic properties were studied

for the rumor identification problem. For temporal properties, a Periodic External

Shocks (PES) model was proposed, and features introduced by this model played a

5

big role in classifying rumors. In [21], an RNN-based model was developed for early

detection of rumor circulation, which uses time-series input along with information

about rumongers, and psycholinguistic traits of rumor content. Nguyen et al. ' s work

[22] focused on early rumor detection task by determining the credibility of each

tweet using Convolutional Neural Networks and used it with a time-series based

rumor classification model.

1.2.4.4 Combination of Above Methods. Kwon et al. [20] em­

ployed temporal, structural, and linguistic characteristics of rumor propagation and

proposed a new periodic time se1ies model to identify temporal features. They

also identified key structural and linguistic features in the rumor propagation and

achieved better performance results over the existing state of the arts on rumor clas­

sification. [n [6], they explored the importance of content-based features, network­

based features, and microblog-specific memes for the identification of rumors. Content­

based features are extracted from text data, whereas network-based features focus on

the user's behavior. Moreover, features such as hangtags and URLs extracted from

microblog-specific (Twitter-specific) memes could be helpful in the enhancement of

rumor detection models.

Ma et al. [23] used time-series data, in which content-based and user-based

features are combined with temporal features for rumor detection problem. In [21],

an RNN-based model was developed for early detection of rumor circulation, which

uses time-series input along with information about rumongers and psycholinguistic

traits of rumor content. Nguyen et al. [22] focused on early rumor detection task by

determining the credibility of each tweet using Convolutional Neural Networks and

used it with a time-series based rumor classification model.

6

1.3 Challenges and Proposed Solutions

This section gives the challenges and contributions of this study.

1.3.1 Problems Considered and Challenges. These are presented as fol­

lows:

- Raw datasets collected usually consist of missing values. Datasets need to be

pre-processed well before a model gets trained with them; otherwise, these

missing values reduce the detection perfonnance significantly if left untreated.

- Mitigating missing values in the data is a non-trivial task. It is not possible to

check whether the data contains MCAR or MNAR [24].

- In general, datasets contain a variety of data types, for example, strings and

numbers. Handling missing values of numeric type is different from categorical

missing values because nwnbers can be more easily processed than text.

- Moreover, when breaking news occurs on social media, a significant amountof

information posted in the beginning stages of its propagation is unverified [25].

- It is difficult for social media users to distinguish news fake or real for rapidly

spreading events where background information about an event is inadequate,

and a minimal amount of time is available for verifying news truthfulness.

- Instant fake news detection techniques are required to prevent the damages

that may be caused by fake news spreading.

- Detection of rumors in social media has a lot of importance among research

communities because unverified infonnation may be easily disseminated over a

large network.

7

_ If the spread of false information is not stopped early, it may cause turmoil in

society. In the case of time-critical events, the effects may be dreadful.

_ Most of the rumor detection models require a complex feature set, which may

increase computational complexity and make training processes of detection

models more difficult.

- Given the fast-paced social media environment, fast detection methods are

needed to prevent rumors on social media.

1.3.2 Proposed Solutions and Contributions. These are presented next:

- This study focuses on data pre-processing methods for handling missing values

in data and generation of time-series data from social media infonnation for

early detection of rumors in social media using machine learning and deep

learning.

- The researcher used scikit-learn's lmputer with a ·'mean" strategy for handling

missing values in the numerical columns, which replaces the missing values with

the mean along the axis (0 - for columns, 1 - for rows) [26).

- Categoricallmputer is a new method available in skleam-pandas1 module for

handling categorical missing values.

- The researcher combined traditional machine learning models capable of han­

dling multi-class classification tasks with appropriate data pre-processing meth­

ods discussed in chapter 3. It is shown that the multi-layer perceptron model

significantly outperforms the state-of-the-art (27].

1https://github.com/scikit-learn-contrib/sklearn-pandas

8

_ This study also presents a multiple time-series data analysis model that ana­

lyzes different time-series Twitter data for early detection of fake news in social

media in Chapter 4.

- Generated time-series data from raw datasets can behelpful to simplify the fea­

ture extraction process, to reduce the computational complexity of ML models,

and to reduce the time required for ML models training and testing processes.

- Results show that the time-series model used with the GaussianNB classifier

achieved a high Precision score.

- This study proposes a novel rumor detection method by only using the temporal

features of the data for fast rumor detection in social media in Chapter 5.

- As only temporal features are used to generate time-series data, there is no need

for the extraction and selection of complex features. This helps in reducing the

computational time dramatically, which is critical for timely rumor detection.

- The researcher generated the time-series data in pure numeric type, which is

very favorable to the classification models and can be readily inputted into a

model.

- By experimenting with advanced deep learning models, the researcher improved

the micro-averaged Fl score by 4.6%, compared to the baselines [28).

- This study includes a method proposed in Chapter 6, with that computational

complexity can be significantly reduced as timestamps of tweets are used rather

than their contents or user social engagements to perform feature extraction.

Moreover, the extracted feature set is of numeric type, which is amicable to

classification models.

9

_ The proposed ensemble model improves the classification models' performances.

It uses the majority-voting scheme on multiple neural networks that are part

of the ensemble model and takes advantage of their strengths.

- Validation of the proposed method on the PHEME2 dataset and the perfor­

mance results demonstrate the effectiveness of the proposed scheme.

1.4 Outline of the Study

This study has seven chapters. The first chapter introduces the background

knowledge on fake news detection in social media, and the second chapter provides a

review ofrelated studies. Chapter 3 discusses the mitigation of missing values in data,

especially the proposed data imputation method for enhancing fake news detection.

Chapter 4 explores the temporal characteristics of fake news for improving the early

detection of fake news in social media using traditional machine learning models.

Chapters 5 and 6 focus on the rumor detection problem by exploring the temporal

properties of rumors using deep learning. Chapter 5 discusses the implementation

of deep learning techniques to the specified problem, and Chapter 6 highlights an

ensemble-based deep learning approach to tackle the problem. Finally, Chapter 7

contains concluding remarks and future work.

2
https:/lfigshare .com/articles/PH EM E_ dataset_for _Rumour_ Detection and era city

C lassification/6392078 - - -

10

CHAPTER2

LITERATURE REVIEW

Fake news detection attracts a massive amount of attention because of its appli­

cation values. It employs ideas for detecting rumor [7] from texts for implementing

fake news detection based on similarities between fake news and rumor. Machine

learning, especially deep learning, is a key technique applied for fake newsdetection.

Extracting and selecting useful features from data could enhance fake news detec­

tion using machine learning and deep learning. Moreover, the news' contents and

the network structure of the news can be useful for identifying fake news [l 4].

On the other hand, rumor detection on social media itself is a well-known research

topic. Some of the studies in the literature addressing the rumor detection problem

are discussed next. The scheme proposed by Ma et al. [23] combined content-based

and user-based features with temporal features to detect rumors. Nguyen et al. [29]

focused on the early rumor detection task by determining each tweet's credibility

using Convolutional Neural Networks with a time-series-based rumor classification

model.

For automatic rumor identification in microblogging websites, Ma et al. (30]

proposed a Dynamic Series-Time Structure (DSTS) to capture variations in social

context features such as microblog contents, users, and propagation patterns over

time. They discussed the strong capability of their proposed model in the early

detection of rumors. Hierarchical Attention RNN (HARNN)[8] is proposed for rumor

detection, which uses a Bi-GRU with attention mechanism to capture h igh-level

representations of tumor contents and a GRU layer to capture semantic changes

11

over the life-cycle of events. The HARNN model can select info1mative posts and

distinctive words as features and detect rumors at an early stage.

Additionally, the rumor analysis framework [9] was proposed to clarify social me­

dia topics and visualize topic structures in time series variation as a first step and

then sought help from a reliable external source to determine the topic's reliabil­

ity. Rumor [1 O] has three general characteristics: text of an article, articles'user

responses, and its source users promoting it. All these characteristics were combined

for more accurate and automated fake news predictions. A Merged Neural Rumor

Detection (MNRD) [11] was proposed for rumor detection in social media, which

separates original posts from retweets and focused on rumor events in three aspects:

original post's content. diffusion process of retweets as well as user information.

A deep attention-based model [3 1] was proposed for the early detection of ru­

mors, which captures long-range dependency in the contextual variation of posting

series. In [32], authors explored user-specific features and content characteristics of

social media messages. They proposed an information propagation model based on

heterogeneous user representation to observe distinctions in the propagation patterns

of rumors and credible messages using it to differentiate them. Their study identi­

fied that rumors are more likely to spread among certain user groups. To predict a

document in a social media stream to be a future rumor and stop its spread, Qin et

al. [33] used content-based features, novelty-based features, and pseudo feedback.

In [34], a sentiment dictionary and a dynamic time series algorithm based Gated

Recurrent Unit model was proposed that identifies fine-grained human emotional

expressions of microblog events and the time distribution of social events to detect

rumor events. By treating microblog users' behaviors as hidden clues to detect

possible rumormongers or rumor posts, Liang et al. [35] proposed a user behavior­

based rumor identification scheme. It focused on applying traditional user behavior-

12

based features and authors' proposed new features that are extracted from users'

behaviors to rumor identification task and concluded that rumor detection based on

mass behaviors is better than detection based on microblogs' inherent features.

In [36], temporal, structural, and linguistic features of social media rumors were

explored for the rumor classification task, and using those features helped in identi­

fying rumors more accurately. Wu et al. [37] proposed a graph-kernel-based hybrid

SVM classifier that can capture high-order (message) propagation patterns and se­

mantic features, such as the topics of the original message for automatically detecting

fa lse rumors on Sina Weibo. However, most of the existing methods rely on a variety

of features, for example, news contents, social context information, and/or complex

classification model architectures to enhance fake news or rumor detection in social

media. Due to this, the identification of false information on social media may be

delayed since social media's fast-paced environment allows a minimal amount of time

to analyze a piece of infonnation before it propagates all over the network.

CHAPTER3

FAKE NEWS DETECTION ENHANCEMENT WITH DATA

IMPUTATION

13

Raw datasets collected for fake news detection usually contain some noise such

as missing values. In order to improve the performance of machine learning-based

fake news detection, a novel data pre-processing method is proposed in this study to

process the missing values. Specifically, the missing values problem was successfully

handled by using data imputation for both categorical and numerical features. For

categorical features, missing values were imputed with the most frequent value in the

columns. For numerical featw-es, the mean value of the column was used to impute

missing numerical values. In addition, TF-IDF vectorization was applied in feature

extraction to filter out irrelevant features. Experimental results show that Multi­

Layer Perceptron (MLP) classifier with the proposed data pre-processing method

outperforms baselines and improves prediction accuracy by more than 15%.

In this study, the data were pre-processed by employing imputing strategies for

the missing values in the dataset, where skleam-pandas1 categorical imputing and

sklearn' s Imputer2 with mean imputing strategies were employed for categorical data

and continuous data, respectively. Categorical and nwnerical features were han­

dled together using the sklearn-pandas 1 DataFrameMapper method. After the data

pre-processing and feature extraction phases are completed, the researcher supplied

the cleaned dataset into classifiers such as Support Vector Machines, Decision Tree,

1https://github.com/scikit-learn-contrib/sklearn-pandas
2http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

lmputer.html

Multi-layer Perceptron, and Gradient Boosting for experimental analysis and com­

parison.

The contributions of this study include:

14

- The raw dataset has many missing values spread across multiple columns. The

researcher successfully processed the missing categorical and continuous values

using the categorical imputer and mean imputer.

- The researcher combined traditional machine learning models capable of han­

dling multi-class classification tasks with appropriate data pre-processing meth­

ods and showed that the multi-layer perceptron model significantly outper­

formed the state-of-the-art methods [27].

The outline of this study is as follows: Section 3.1 introduces the LIAR dataset.

The proposed method is discussed in Section 3 .2. Experimental results and analyses

are shown in Section 3.3, followed by Section 5.5, which concludes the Chapter.

3.1 LIAR Dataset

LIAR dataset3 is a benchmark dataset for fake news detection collected from

PolitiFact4. It includes both categorical and numerical features combined for a total

of 14 columns. Columns containing categorical (text) data include statement identi­

fier, statement, subjects discussed by the speaker, and meta-data for each speaker,

such as speaker's job title, state, party, and the location of the speech. The numer­

ical features contain the speaker's total credit history count, including the current

statement, which are named as, barely true, false, half true, mostly true, and pants

on fire counts [27]. The target labels consist ofsix classes, includingpants-:fire,Jalse,

barely-true, half-true, mostly-true, and true. This dataset is human-labeled, and each
3https://www.cs.ucsb.edu/-william/data/liar_dataset.zip
4http://www.polit ifact.com /

15

statement is evaluated by a PolitiFact editor for its truthfulness. The overall dataset

contains 12,836 records in which the training set has I 0,269 records and validation,

and testing sets have 1,284 and 1,283 records, respectively. The training, validation,

and test sets are supplied in separate files. Figure 3.1 shows some records of the

LIAR dataset.

3.2 Proposed Methodology

3.2.1 Data Pre-processing. This section discusses how the researcher mit­

igated missing values in the LIAR dataset and performed the feature extraction.

3.2 .1.1 M itigate M issing Values . LIAR dataset3 consists of a com­

bination of categorical and numerical features. This dataset has many randomly

located missing values for both types of features. It is not possible to check that the

observed data contains missing values of Missing Completely at Random (MCAR)

or Missing Not at Random (MNAR) [24]. Therefore, missing data imputation would

be a good solution to handle these missing values. Typical imputation methods such

as "mean" or "mode'· rely on explicit model assumptions. In general, the mean is

preferred for quantitative data, and mode is preferred for qualitative data [24].

1n this study, the researcher used scikit-learn 's lmputer with a "mean'· strategy

for handling missing values in the numerical columns, which replaces the missing

values with the mean along the axis (0 - for columns, I - for rows) [26]. Categor­

icallmputer is a new method available in the skleam-pandas module for handling

categorical missing values. It is applied to data columns that are of type "string." It

substitutes null values with the most frequent value in the column. Researchers who

use the scikit-learn module cannot impute missing categorical values since scikit­

learn module imputing methods are limited to numerical data. Therefore, the Cat­

egoricallmputer method helps impute missing categorical values, whereas imputing

16

FIGURE 3.1 A snapshot of LIAR dataset

~ ~ ilte!'d • ~ p ~ pltf !d!.~.l 1k W.i.l ~-'" !ft.•." -

1631.j!G!I fllse Sa)s tl't A. ixlrtlon •·boi\. ltit, l'tj)I'. lws ~11,11 1 • • • l UIJ!!'

16146. json fllf•tn.e lte~ did L ffif!,hls. scott-1.iro.. State dtl1.. Virgi'lil d.mit 1 • l floor §?.

m.J!OI iostly-tN Hilla.,y (L futl£n·:»- bauct-ti. Pml&i:t Illlriols demit t h

1Ul.j5011 lilse l!altb cir. htlltb-cire b1"-pxtl. Ill\ Qi'1 none J s • U161'tL

W21.jlOI ~llf•W ~ e<ua. e<Q'Qrf,jo. chrllw. u1 Fletic. dtt:icNt IS 9 I ! 1 ., bteNL

12161.jSOII IN The Olcag. ~.otion rdlli-m Wi1Ca-Jin • Wisc~si!I l'f?liei'I t 3 2 5 l I\ 1r1lln.

234!. jsai bnly-tN Ila~&. cr.dld.ites.. rtr,.Micll. ui lws repbllu, 1 l J i i,ess rt.

151. j!OI ~lf-w ·1 • 1 the o. ethics wld-ti. Pmi~ llli~is demit t l i.cr1t.

1681.jS(II ~lf-tn.f lb,if'M,Ljc,ol ~t11-l0L r¥, r~ l • l~il!

,7'!.jSCIII iostly•w S,,s ~ "- !fltrit,•s. t.ty-rtroe. Stlte l'tj)I'. Wisctr1b repblici:, • I 111r1lh.

18 l115,jSCII iostly-lN Fer tl't Ii. ilictions !Uffl-11!\. U.S. Se!'lL la, lffley delxtat 3 3 • ·~
u '1ll.json Ml-IN Slr.c, a ecmy,jo.. bemi1-1 U.S. St'~t. Vnt't ~t i 11 ZI C I l lll!et

12 ~7.jSCII false t.:1 llitt. Mstriy,st. lltt-rtny F«wet p. 11.sOOtSL ~lien 31 ~ I B It 11 lmrvL

13 1616.jSCII iostly-w The ecl)'IL ecQ'Qr(,fe. ~~ nii nai, none I l l 4 I a iwfl!!i.

" 1791. jsoi ba-ely-tn.t ~t c' 111. htalti-m if'ltit-will Couoist '-',Id col-1st ' 3 5 1 cai:ts o.

15 18613.json Nlf-tn.e In thls IJ. electiirs bemle-1 U.S. St-al bl l~t l J2 Cl I l tci,i hL

16 618.json tn:t 1((1fo ~ ftwal-1>.i. wld «i. Prtsldt':t llll~I! delOO'at ' ir,Ji01d

11 la6l.jSO! tartly-IN U.S. ~-. fedml-bl. ritiwl-r. 1,11 l\i1 ~~ I s I l ltll5 rtL

II UJn.JIOI ialf-tr.t \ater rltt. firaxbl•. ~-mt U.S. !kw. W!scocs!t mtlt • ' 3 1 a Cf'il'tll.

19 Ul8S.json 1C1tly-w Alalst !!I. ~tcy. jact-1111 lrm..i, s. Washl"ct011. dtt:lct;t I I • l'l ~tem.
19 mn.Jsai hi~ lilen a'll. KOIUJ,VI. d!--~15-rlc. mte tt;r. Cl-tlOII r!?,blklll ' 1 2 I .,.!~\.
21 i667. jsat iostly-tn.. ll't l.l!lt!d. c«p0ratlo. ,•le -bollL (o-illst ca l'.i'l IIOl'i t • a discussL

u 12181.jSCA 1C1tly-tn.t • j,st .._ ecm, blllary-<L Presidtiti. 1!v Yett dtt:lcrlt a I I Nil/ts it.

23 2671. jlal f~lf-tn.t Soys Scott. !'!11th-car. git,ter-n. m ijsc~sLI ro,e 3 j 1 l C•ir,.

1')9SJ, jSCll ba~y-w Soys lti.tt • alortJo,,f. p!l':·!d·1i- l«xJcy g. kis"lr.ior... IIQ't I • ' ' , r~oi.i

l5 1em. Json false I ~ IN.. ~alth-car-t ri-q-pelo. lb.se lti.llil. Cal!fON1J1 delOO'at u 2 HMCOII.

26 12117.jSCI IOStly•tn.. 11.itt crll!. cril!,dlY!. hlllaty-cL Pml~tL le, Yort mrat B I I l~l.

l1 me. Json Nlf•tM llct P.rry. mlidates.. t!d-r""ent aisldl'l Texas re,J,llc11 t 1 ' iic1,1ed cc.

l8 lltl!. json false 1111 s..wo. t~li{I. pa!.-gel. Presider! • 1111 Yort activist ' 1 ' I I beet

19 Um.jSOI ICltly-tN 1Mb ii'& dlierslty,. peter-tird. l!f.terl'll lti.s11Ui ~liClll • ' l l l g.lJt!M.

• 13237.jsal IN ~ P.il • cmdatts. hilury-cL Prtslde•tL lev Yirl mrat a I I 1 I beet

17

methods in the scikit-leam module could be applied to numerical data.

3.2 .1.2 Feature Extraction. Wu et al. [38] stated that extracting

useful features from the actual news content is a challenging task because fake news

spreaders could make the content of the fake news look like real news. In this study,

the researcher used term frequency and inverse document frequency (TF-IDF) to

identify useful features from news content. The TF-lDF technique is used to produce

a composite weight for each term in the document, which is called tf-idf weight [39].

Calculating tf-idf weight is important in information retrieval and text mining tasks

as it determines the significance of a term or word in a document and a corpus

tf - idfi,d = tfi,d X idfi (3.1)

In equation 3. l, t means a term, and d refers to a document. The term frequency t[t,d

means the measure of the frequency for a particular term t in a document, in other

words, how many times term t appeared divided by the total number of terms in the

document. Inverse document frequency idfi is the logarithm of the total number of

documents in the corpus divided by the number of documents where term t appears.

idfi measure helps in knowing the importance of term t.

3.2.2 Model. Fake news detection was treated as a multi-class classifica­

tion problem. Traditional machine learning classifiers such as Support Vector Ma­

chines (SVM), Decision Trees, Multi-layer Perceptron, and Gradient Boosting were

selected. For SVM models, the researcher used classical SVC, Linear SVC with

"crammer .singer," ·'one-vs-rest" multi-class strategies, and Nu-SVC as classifiers.

3 .2.2.1 Support Vector Machines. They have great importance m

solving classification problems consisting of nonlinearly separable classes. In this

18

study, Support Vector Classification (SVC), Nu-Support Vector Classification (NuSVC),

and Linear Support Vector Classification (LinearSVC) were used to handle multi-

class classification tasks. SVC and NuSVC implement the one-vs-one scheme for

multi-class classification, where the classifiers are constructed based on the nwnber

of classes presented in the dataset. NuSVC is similar to SVC, but NuSVC conh·ols

the nwnber of support vectors and training errors using a parameter v. LinearSVC is

also similar to SVC, but the kernel used for classification is '"linear." They can imple­

ment "one-vs-rest" and "crammer ..singer" multi-class strategies in which the former

strategy is generally preferred as the latter strategy is more expensive to compute,

and better performance is rarely achieved.

3.2.2.2 Decision Tree. It is a supervised classification and regression

mode] that relies on the decision rules derived from the data features. It could be

applied to binary classification problems as well as multi-class problems. Jt is capable

of handling both categorical and numerical data and requires little data preparation.

On the other hand, sometimes, this model could create over-complex trees (i.e.,

overfitting). Data alteration may change the complexity of the decision tree.

3.2.2.3 Multi-layer Perceptron. It is a supervised learning algorithm

that learns a function f(·): Rm - R> by training on a dataset, where mis the num-

ber of dimensions for input and o is the number of dimensions for output. It consists

of one or more non-linear layers, called hidden layers between input and output lay­

ers. Input features are a set of neurons { Xilx1, xi, ... , Xm } . ln the hidden layer,

each neuron transforms previous layers values by using a weighted linear summation

w1x1 + wixi + . . . + WmXm and non-linear activation function g(·): R - R . Values

from the last hidden layer are transformed into output values by the output layer.

It is useful for on-line learning and to learn non-linear models.

19

3.2.2.4 Gradient Boosting. Gradient Tree Boosting is one of the ensemble­

based methods. Gradient Boosting builds a forward stage-wise additive model. It

could be used for both classification and regression problems. In this model, het­

erogeneous features are naturally handled, but scalability is an issue because of the

sequential nature of boosting.

3.3 Experiment

The researcher employed LIAR dataset 3 to verify ML models. Four evaluation

metrics, namely accuracy, precision, FI-score, and recall, are used to evaluate ML

models' performance. One of the major challenges of performing classification on

this dataset was to handle missing values. To mitigate this problem, the researcher

applied three data pre-processing methods on the dataset and examined how effec­

tively each method could impact the classifiers' performances. Feature extraction

was performed on the dataset for all three methods as discussed in Section 3.2.1.2,

and the researcher utilized all features except statement id for the analysis.

Additionally, the models' computational complexity was examined by monitoring

the training and prediction time for different classifiers. They are presented in hours,

minutes, seconds, and milliseconds (HH:MM:SS:ms) format. The three methods used

are as follows:

3.3.1 Delete Records Containing Missing Values. In this method, records

consisting of missing values were deleted. This method removed more than 4,000

records from the dataset. MLP classifier outperformed other classifiers in predicting

validation and test sets. The performances are shown in Tables 3.1, 3.2, and 3.3.

3.3.2 Replace Missing Values with Empty Text. The researcher used

empty text to replace the missing values in the dataset. With this method, the

20

TABLE 3.1 The training time of different classifiers with the delete method

Classifier Training Time
(HH:MM:SS:ms)

SVC 0:21 :33.292383

LinearSVC_CS 0:03: 11.075396

LinearSVC _OVR 0:00:09.173900

NuSVC 0: 13:13.883099

Decision Tree 0:00:06.170634

MLPClassifier l :40:09. 743315

GradientBoosting 0:21 :42.929440

TABLE 3.2 Performance results on the validation set with the delete method

Classifier Prediction Time Accuracy Fl Precision Recall
(HH:MM:SS:ms) %

SVC 0:0 l :56. 706200 0.283 0. 182 0.217 0.234

LinearSVCL:S 0:00:00.634472 0.174 0.173 0.179 0.181

LinearSVC..OVR 0:00:00.02 l 058 0.265 0.228 0.258 0.237

NuSVC 0:01 :29.970123 0 .258 0.240 0.255 0.244

Decision Tree 0:00:00.047126 0.326 0.324 0.328 0.322

MLPClassifier 0:00:00.1 05282 0.416 0.370 0.515 0.370

GradientBoosting 0:00:00.071388 0.400 0.377 0.441 0.368

21

TABLE 3.3 Performance results on the test set with the delete method

Classifier Prediction Time Accuracy Fl Precision Recall
(HB:MM:SS:ms) %

SVC 0:01 :58.420455 0.286 0.174 0.179 0.230

LinearSVC .CS 0:00:00.040109 0.173 0.166 0 .172 0.174

LinearSVC.OVR 0:00:00.025069 0.225 0.210 0.224 0.217

NuSVC 0:01 :26.568999 0.247 0.229 0.239 0.238

Decision Tree 0:00:00.044117 0.339 0.343 0 .338 0.351

MLPClassifier 0:00:00.079210 0.394 0.359 0.515 0.356

GradientBoosting 0:00:00.086864 0.390 0.391 0.438 0.381

researcher successfully prevented the data loss problem because no records were

deleted. Again, the MLP classifier stood at the top in the list in terms of perfor­

mance. This time the prediction accuracies for validation and test sets were improved

compared to the delete method. Tables 3.4, 3.5, and 3.6 show the respective perfor­

mance results for validation and test sets with the replace method.

TABLE 3.4 The training time of different classifiers with the replace method

Classifier Training Time
(HH:MM:SS:ms)

SVC 1:38:25.423104

LinearSVC _CS 0:06:32.412224

LinearSVC _OVR 0:00: 15.322742

NuSVC I :05: 17.864797

DecisionTree 0:00:24.834177

MLPClassifier 0:42:30.996866

GradientBoosting I: 12:06.434310

22

TABLE 3.5 Performance results on the validation set with the replace method

Classifier Prediction Time Accuracy F l Precision Recall
(HH:MM:SS:ms) %

SVC 0:06:49.043784 0.243 0.198 0.291 0.230

LinearSVC.CS 0:00:00.083121 0.191 0.183 0.183 0.183

LinearSVC.OVR 0:00:00.066884 0.280 0.273 0.294 0.277

NuSVC 0:06:25.410218 0.354 0.347 0.363 0.342

Decision Tree 0:00:00.110789 0 .393 0.391 0.394 0.389

MLPClassifier 0:00:00.474289 0.458 0.454 0 .553 0.443

GradientBoosting 0:00:00.157420 0.446 0.441 0.486 0.432

3.3.3 Impute Missing values Using Data Imputation Techniques. ln

this method, the researcher evaluated the data pre-processing method as discussed

in Section 3 .2.1.1, using different machine learning classifiers on validation and test

datasets after these models were trained successfully. Tables 3.7, 3.8, and 3.9 show

the performance results on the val idation set and test set, respectively. It is observed

that the classifiers with data imputation outperformed those with the delete method

in Section 3.3. l. Moreover, replace and data imputation methods achieved almost

similar performance results. With the delete method, examples were obtained by

eliminating records with any missing values, which reduces the actual dataset size

and causes information loss. This method is suggested only for large datasets with a

small percentage of missing values occurrence, and analysis of the complete examples

should not make the dataset seriously biased [40]. On the other hand, with replace

and data imputation methods, the problem of data loss was eliminated. For the

replace method, the researcher considered missing values as blank values and treated

them in the same way as other values. Data imputation methods are simple and

23

TABLE 3.6 Performance results on the test set with the replace method

Classifier Prediction Time Accuracy Fl Precision Recall
(HH:MM:SS:ms) %

SVC 0:07:35.188419 0.248 0.188 0.254 0.224

LinearSVC .CS 0:00:00.084752 0.184 0.174 0.176 0.175

LinearSVC-OVR 0:00:00.061115 0.256 0.242 0.258 0.249

NuSVC 0:06:59.119033 0.353 0.341 0.351 0.337

Decision Tree 0:00:00.116335 0.370 0.381 0.379 0.384

MLPClassifier 0:00:00.502584 0.434 0.434 0.533 0.434

GradientBoosting 0:00:00.205547 0.426 0.432 0.465 0.426

effective solutions when the missing values problem caused by missing at random

(MAR) mechanism, which is the case here [40].

Compared to the state-of-the-art methods [27], the proposed method for data pre­

processing and MLP Classifier has significantly improved the accuracy of the

validation set and test set by 21 % and 16%, respectively. Training iterations are

limited to 200 with a fixed random state value, and the researcher employed stochas­

tic gradient descent to optimize the MLP classifier. Gradient Boosting, Decision

Tree, and NuSVC classifiers also achieved satisfactory performances where Decision

Tree Classifier consumed less time for training. It was also observed that classifiers,

including SVC, LinearSVC with "crammer_singer" and "one-vs-rest" strategies per­

formed poorly and achieved fewer accuracy scores since the dimensionality of the

feature is high. Additionally, the researcher measured the total time consumed for

the prediction on both validation and test sets as well as some other metrics, such

as FI -Score, Precision, and Recall.

The researcher ran the MLP Classifier with the proposed methods for ten rounds

to observe its performance without using random state value. The nwnber of it-

24

TABLE 3.7 The training time of different classifiers with the data imputation

method

Classifier Training Time
(HH:MM:SS:ms)

SVC 1 :37:29.514189

LinearSVC _CS 0:07:52.727027

LinearSVC _QVR 0:00:20.665244

NuSVC 1 :32:44.329309

Decision Tree 0:00: 12.401620

MLPClassifier 0:48: 19.175377

GradientBoosting 1 :02: 10.105386

TABLE 3.8 Performance results on the validation set with the data imputation
method

Classifier Prediction Time Accuracy Fl Precision Recall
(HH:MM:SS:ms) %

SVC 0:08: 10.334100 0.245 0.200 0.293 0.232

LinearSVC .CS 0:00:00.086328 0.195 0. 190 0.189 0.191

LinearSVC.OVR 0:00:00.150023 0 .267 0.264 0.274 0.272

NuSVC 0:07:54.447672 0.367 0.359 0.394 0.349

Decision Tree 0:00:00.075579 0.394 0.395 0.400 0.393

MLPClassifier 0:00:00.491813 0.457 0.455 0.504 0.444

GradientBoosting 0:00:00.107796 0.442 0.437 0.484 0.428

25

TABLE 3.9 Performance results on the test set with the data imputation method

Classifier Prediction Time Accuracy Fl Precision Recall
(HH:MM:SS:ms) %

SVC 0:08: 15.804666 0.248 0.188 0.254 0.224

LinearSVC .CS 0:00:00.088085 0.178 0.170 0.171 0.171

LinearSVC-OVR 0:00:00.209324 0.239 0.231 0.238 0.244

NuSVC 0:07:37.068152 0.360 0.342 0.366 0.338

Decision Tree 0:00:00.078278 0.381 0.391 0.386 0.397

MLPClassifier 0:00:00.462904 0.436 0.440 0.492 0.435

GradientBoosting 0:00:00.104769 0.426 0.432 0.463 0.426

erations is limited to 300 for the MLP classifier. Table 3 .10 lists the results for

the training set. It shows that the MLP classifier combined with proposed data pre­

processing method is stable by maintaining training loss consistency.

Figure 3.2 gives the training loss curves versus the number of iterations. Tables

3.11 and 3.12 show the details of the MLP Classifier performance for ten rounds on

validation and test sets. It is observed that the training loss curves for all the l 0

rounds are consistent with the average final loss value of 1.279.

3.4 Concluding Remarks for the Chapter

ln this study, a data imputation pre-processing method was proposed for en­

hancing machine learning-based fake news detection. The proposed method focused

on how to process the missing values in the raw data using data imputation tech­

niques. Experimental results showed that machine learning models combined with

the proposed data pre-processing method outperformed baselines.

26

TABLE 3.10 Performance of the MLP classifier

Round Training Time Training Loss No. of Iterations
(HH:MM:SS:ms)

0:39:48.745564 1.303 127

2 0:49:54.880182 1.280 154

3 0:47:42.052 l 16 1.286 148

4 0:55:40.648856 l.270 171

5 1 :04:42.60 l 990 1.265 177

6 1: 16: 18.708549 1.254 197

7 0:37:16.882210 1.322 11 6

8 0:48:07.396703 1.265 175

9 0:48:46.390700 1.266 177

10 0:41 :38.946055 1.282 152

TABLE 3.11 MLP classifier performance results on the validation set

Prediction Time Accuracy Fl Precision Recall
(HH:MM:SS:ms) %

0:00:00.480897 0.465 0.454 0.574 0.446

0:00:00.357233 0.470 0.462 0.577 0.454

0:00:00.385952 0.453 0.446 0.571 0.438

0:00:00.48 1820 0.451 0.445 0.570 0.437

0:00:00.469991 0.469 0.458 0.577 0.452

0:00:00.395029 0.467 0.458 0.557 0.449

0:00:00.334350 0.450 0.449 0.486 0.439

0:00:00.43409 1 0.461 0.453 0 .576 0.447

0:00:00.34571 1 0.459 0.453 0.555 0.443

0:00:00.355381 0.462 0.457 0.560 0.448

27

TABLE 3.12 MLP classifier perfonnance results on the test set

Prediction Time Accuracy Fl Precision Recall
(HH:MM:SS:ms) %

0:00:00.453560 0.443 0.439 0.532 0.439

0:00:00.437473 0.430 0.429 0 .533 0.428

0:00:00.355367 0.449 0.444 0.551 0.445

0:00:00.470456 0.443 0.441 0.548 0.441

0:00:00.622739 0.449 0.443 0.550 0.443

0:00:00.294496 0.445 0.441 0.538 0.443

0:00:00.443745 0.448 0.455 0.483 0.447

0:00:00.25115 1 0.436 0.433 0.540 0.433

0:00:00.33 1610 0.444 0.440 0.539 0.441

0:00:00.283757 0.443 0.438 0.539 0.441

FIGURE 3.2 Training loss curves of the MLP classifier

1.8 ---1-------1-------1------+----+---+----+-:
I I

Round 1 -
Round 2
Round 3
Round 4 -
Round 5
Round 6
Round 7 -
Round 8
Round 9
Round 10 -

l.
3 ·1-17-T-rl~f;~::::r

0 25 so 75 100 125 150 175 200
Number of Iterations

28

CHAPTER4

MOL TIPLE TIME-SERIES DATA ANALYSIS FOR FAKE NEWS

DETECTION IN SOCIAL MEDIA

29

Fake news detection is a big problem in the fast-paced information spreading

social media environment. The effects of fake news propagation are dreadful in

case of time-critical events, such as natural disasters. In this study, a multiple time­

series data analysis model was proposed to detect fake news events on Twitter using

only tweets' temporal properties. With the proposed model, the researcher

significantly reduced Machine Learning (ML) models training, and testing processes

time requirement, and their computational complexity, which helped quick detection

of fake news events. The experimental results showed that the time-series model,

combined with the GaussianNB classifier achieved a high Precision score of 94%.

In this study, the researcher tried solving the fake news detection problem in

social media using a time-series approach. The PHEME1 dataset of rumors and non­

rumors was used for the experimental analysis. This dataset is a collection of Twitter

conversations categorized as rumors and non-rumors. The proposed model was

designed to convert each of these conversations into a time-series vector using the

timestamps of each tweet in a conversation. The time-series vector representation of a

Twitter conversation consists ofreaction (tweets) counts corresponding to the source

tweet for each time interval from the beginning to the end of the conversation. With

this time-series approach, data preprocessing time was reduced. Using the generated

time-series data with selected machine models, ML models training time and their

1https://figshare.com/articles/PHEME dataset of rumours and non-rumours/
4010619 - - - - -

30

computational complexity was reduced by taking advantage of the numeric data

type. A 94% Precision score with Gaussian Naive Bayes (GaussianNB) Classifier

was obtained.

The outline of this study is as follows: In Section 6.3, a fake news detection

problem in the time-series domain was presented. An introduction to the dataset

and ML models used in the experimental analysis is provided. Section 4.2 contains

the experimental results. Finally, Section 6.6 concludes the Chapter .

4 .1 Methodology

4.1.1 Problem Definition. Information spreads quickly on social media, es­

pecially news that can capture social media users' attention more likely to propagate

faster than ordinary news. In the case of breaking news on social media, a significant

amount of information posted in the beginning stages of its propagation is unverified

[25]. It is difficult for social media users to distinguish news fake or real for rapidly

spreading events, where background information about an event is inadequate, and

a minimal amount of time is available for verifying news truthfulness. Instant fake

news detection techniques are required to prevent the damages that may be caused

by fake news. The researcher's approach to using time-series data for fake news

detection is quick in flagging news as fake or true. The data is all numeric, and

any information is discarded about the news except the news creation time, which

reduces the time required for the ML model training process.

4.1.2 Data Preparation and Analysis. This section introduces the PHEME

dataset, and discusses how data pre-processing is performed on the dataset. At last,

gives a brief analysis about the dataset.

31

4.1.2.1 PHEME Datase t. This dataset has a collection of Twitter

rumors and non-rumors posted during five breaking news: Charlie Hebdo shooting,

Ferguson unrest, Germanwings plane crash, Ottawa shooting, and Sydney siege. The

actual dataset consists of a directory for each event, including subfolders for rumor

and non-rumor conversation samples. A source-tweet and its correspondingreactions

(a set of tweets) are provided for each conversation sample. The dataset was collected

using the Twitter streaming API and annotated by a team of expert journalists [5].

The overall dataset consists of 5, 802 annotated tweets for all the five events in which

I, 972 are rumors, and 3, 830 are non-rumors.

4.1.2 .2 Data Pre-processing. The researcher used the scikit-leam

machine learning library for experiments. The experimental setup was done in

Python 3.5.5 using Spyder IDE 3.2.8, and NVIDIA GPU Server. Time-series data

were prepared for experiments in five different time intervals: 2, 5, l 0, 30, and 60

minutes for all five events present in the PHEME dataset. Preprocessed data con­

tains a nwnerical vector representation of Twitter conversations in which each row

represents one whole conversation. Its columns having total reactions count for a

given time interval limit.

The PHEM E dataset consists of a set of events E = k ~ Each event Ei

consists of rumor and non-rumor Twitter conversationl c} . For each event, the

researcher prepared the time-series data for chosen time intervals by iterating through

each event's directory and its corresponding rumor and non-rumor subfolders. The

number of time intervals N (Qj) for a conversation Qj is given by,

N (CiJ) = max timeReactionsii - timeSourceu
1

(4. l)

where timeSourceij is the timestamp of the source tweet, the timestamps of all the

32

reactions corresponding to that source tweet is timeReactionsu = fn, tn., · · · , tr/,

and T is a tunable parameter for setting the desired time interval limit. In the

experiments, the researcher set the values for T = 2, 5, 10, 30, 60minutes.

For every conversation in both the subfolders, the following steps were executed

to generate time-series data:

_ Step l: Read the source tweet and get the originating timestamp.

- Step 2: Read all the reactions corresponding to that source tweet and get their

tweet creation timestamps.

- Step 3: For each time inte1val tij,k = [a, b] , the count of the total number of

timestamps of reactions in that interval is given by,

countt/f.l, = card(Q) (4.2)

where 1:ij,k is the k-th time interval of a conversation cu, k has values from

1, 2, · · · , N , and Q c timeReactionsu, which is given by Q = {x I x > a

I\ x ~ i, and x is the times tamp for a reaction.

Therefore, the vector sequence of a conversation Cij belonging to an event Ei is,

V (q;) = [countt(I. 1 countt1_1.2 countrlj.N] (4.3)

and Ei has a feature vector as follows:

33

D

0 V(Cio) O

D V(Ci1)0
E = o D (4.4)

C C
V (Cin)

The researcher structured the feature vector for an event by filling tailing null

values with Os, and for the analysis, labeled non-rumors as Os and 1 s for rumor

samples.

4.1.2.3 Dataset Analysis. Table 4.1 shows the number of rumors and

non-rumors present in the PHEME dataset for all the five events. Germanwings

Crash and Ottawa Shooting events have slightly more than half of the tweets as

rumors. Charlie Hebdo and Ferguson events have a high percentage of non-rumors.

Sydney Siege event has 57 .2% of non-rumors. In total, this dataset has 66% of non­

rumor samples among 5,802 tweets.

TABLE 4.1 PHEME dataset of rumors and non-rumors

Event Rumors Non-rumors Total Count

Charlie Hebdo 458 (22.0%) 1,621 (78.0%) 2,079

Ferguson 284 (24.8%) 859 (75.2%) I, 143

Germanwings Crash 238 (50.7%) 23 l (49.3%) 469

Ottawa Shooting 470 (52.8%) 420 (47.2%) 890

Sydney Siege 522 (42.8%) 699 (57.2%) 1,221

Total Count 1,972 (34.0%) 3,830 (66.0%) 5,802

34

The idea is to explore any distinction patterns in the propagation of rumors and

non-rumors using time-series data. I plotted Twitter interactions (i.e., number of

rumor and non-rumor tweets) con-esponding to each event in the PHEME dataset for

all the selected time intervals. Figures 4.1, 4.2, 4.3, 4.4, and 4.5 shows propagation

patterns of rumors and non-rumors for different time intervals. From these time­

series plots, I observed that with bigger time intervals such as I 0, 30, 60 minutes,

the difference in propagation patterns of rumors and non-rumors is easily identified

for the events Charlie Hebdo, Ferguson, Ottawa Shooting, and Sydney Siege. The

only exception is event Gerrnanwings Crash, where the propagation patterns are

almost identical for all t ime intervals. For events, Charlie Hebdo, Ferguson, and

Sydney Siege have longer non-rumor spikes.

4.1.3 Machine Learning (ML) Models. The researcher have handpicked

eight machine learning models for the experimental analysis: Birch, Decision Tree,

Gaussian Na··1ve Bayes, KMeans, Logistic Regression, Multi-Layer Perceptron, Ran­

dom Forest, and Support Vector Machine. All of the models are implemented using

scikit-leam Machine Leaming in Python package [26].

4.1.3.1 Birch. Birch is a memory-efficient clustering model that con­

structs a tree data structure called Characteristic Feature Tree (CFT) in which each

node has several Characteristic Feature (CF) subclusters. These subclusters help

in memory management while handling input data by maintaining necessary infor­

mation for clustering such as Linear Sum, Squared Sum, Centroids, Squared norm

of centroids, and the number of samples in a subcluster. The branching factor de­

cides the maximum number of subclusters in a node, whereas the distance between

the existing subclusters and the entering sample is controlled using the threshold

parameter.

FIGURE 4.1 Event Charlie Hebdo propagation patterns for different time inter­
vals

140

120

I :LOO

00 _;
60 -I "'0

a o

0

0

,oo

I
2'50

~00

Ill .- 1'50 ..
I :LOO

$0

0

.. oo

... oo

A 400

,Q :aoo .. ::>oo

~ ioo

0

1600

:1..400

I 1 200

J.000

,; 0 00 .. eoo

!J .. oo

.too

"'

~000

2~00

! >OOO

~
l.-000

!:
l.OOQ

•oo

.,

___ ..;;e;;;;v .. nt C h e rtl•M•t:>de> wlt-h 2 min c-lme lnta•r·::~_,._.,.,.,.

--~ <>

,~on ,0000 "L:l!i,OO '19\ooo "l ~ o 20000
Ttm• t•"'t:•r""V•I

,..•oo 10000 1.~00 ~ :i. >;.oo :>oooo
Ttme t-,~.-v•t

l!lv•nt C:her"fl•h•t:>c:to w•tn :L.0 min t:l m~ lnt.o.-vet

2500 9\-000

--- ---

,~oo 1.0000 "> 2500 , ,ooo 11 7-,.00 ~uooo
Time 1,-,,11;orve1

2:soo aooo 7tsoo 1-oouo :a.a~oo 10000 :1 ,~oo 2oouo
Ttmo tnr.arv••

- ~ • C~•n«~ ~O min tlm• l ntorvet
nc,n ru,..,.,,,n.-

>~oo -,.o.-oo ~ --.-;o:<>:o:o==.=,.=:,.=o=o==:::===,=.,=,.=o=o==,.=o=o::-o-o- -:1
Ttni,- lf"IL-..-v•t

35

FIGURE 4.2 Event Ferguson propagation patterns for different time intervals

I
M
,!!' ...,.
j

I
I --I

I
~ ...
!

-o-- rvmor
00 --- rumor

0

li_. al I
. I

0 10000 20000 310000 "0000 !toOOo

200

,._.,.,.
l.SO

' ""'
>.OO

7,.
,so

"''
0

0

>SO

3100

,. .. 0

200

1!$0

100

00

0

.. oo

... oo

200

T i m• l n.::.-r-v,t11I

l=venl. Per-gu5on wtt. h S mi n t:.lr"l"'\e lnt:.el"""V'e l

--- , vn-,or

20000 30000
T i m• lnt:C1rv•I

..,0000 !SOOOO

20000 30000
T i me, tnco .--vel

40000 ~0000

E!.v Cl-nt: Porou~on with ~o min tlm~ lnt;orvel

non r ""'..-nc..­___ ,..._.....,.,,Qr

IA. Ii l .a. L 1
0 ~~~~~~;:;:====:::;:::::::======::::::::::::======::=:l

10000 20000 30000 40000

"'l>OO

'1000

"00

.. oo

•oo

JOO

II\ ~
0 ·-"

Tlmo lnt:of'"vel
e...v•r"'lt: ~Qrguso,n w1cn <t>U min ~1m119 1n1:•~&t

I

10000 20000 !'10000
T1 l"n • lf'H-• n,,a I

no.-. r umq1 -- ... ,,_'",.

... DO()O

~0000

36

FIGURE 4.3 Event Germanwings Crash propagation patterns for different time

intervals

,o

I
.. o

30

g
-- 20

I 10

0

00

I 00

J •O -s 20

0

:>coo

140 ; 1:>0

100

.a 00

-- t>O

I "0

,o
0

>OO

I Z50

20n

.a
--

1,0

_; , on .. .,
0

600

.. 00

I 400

;; >O<>

-- 2<><>

I 10<>

0

■vent.a 9vrmnnvvt,,g15c.re s t, wlt..h 2 m l •• I.Im• Int.~
nt:~n r-urT,oOr

-- , un,or

200U ouuo oouu
Y'lm- tnol'•~••

'l.OUOO

av .. nt; c:;;;~ rmon..,,.,lng~ h vvlth 5 m•n tlni.• ln t_•f""'V~

2000 0000
r1mo ,,,..c:•,....,,•• eooo 10000 '.l. ~000

zuuo 0000 u oou 10UOU .1.aooo
'Tlm- Int:•.-...,••

l!!vent:. C•rmanwlnoac:rn•h vvlth 30 min tlm• lnt:•rv•I

2:000 0000 •ooo 1.0000 1:&000
Yim- l t"\t---rv .. 1

Bv•nt. O •rr-menwlnoscrn• h vvlth 450 min t:lm• Int.e r-vol

non t"umor

2000 ... 000 0000 0 000 10000 1:ZOOO
TlrY'4 lnl.-r-,,,al

37

FIGURE 4.4 Event Ottawa Shooting propagation patterns for different time in­
tervals

0

>.00

I uo

I eo

-- 40 _;
;;,o

u

.. oo

I 1,00

,Q .. -U><>

I ,>Q

0

500

I 400

i
... ou

,..
2UO

jj
'.1.00

0

600

.. oo

I 400

;; 300

"IS 200

:fJ 100

0

O'-t..•vv•anoo\.ln~"' 2 min '-~'-•• -~•
no'"' rv,, ,o..-

.... ooo

""'000 ~000

•v•nl. 01.t.awn•h<>Ot..lna wU. h 10 m t n t. im• lr"'H.ef"'vet

:1.000 ~000 ~000
Tim- l'"'c:•.---•

~000 >OOO
Tim"" h "llr•,v•I

.-,o,.,, ''"1..-.,, .. ,
-- ,ur,1oor

~000

... 000

EV'•nt.. O•rmenw,ngacra•h vvlt:h GO m in t::lm• lnt:orve l

2000 ,4000 6000 0000
T l n"'la h 'U ,.e"-'•I

non rumor
f"Un"IOt

1.0000 12000

38

FIGURE 4.5 Event Sydney Siege propagation patterns for different time inter­
vals

00

I 00

~ ,oo
"b

I 20

0

200

,.

I 1:SO

,.,. ..
~ ~00

'15 ,,.

~ "'>0

,,,
0

,3::iJ.O

>OO

I 2~0 -

200

I 1:SO ..
:n 100

&O

0

600

700

i ... oo

.. oo

J 400

.... >OO

I 200

ioo

0

600

500

I 400

~ 300

.,,,
200

I 100

0

even t.. Sydn<aty•leo• wlt.h :a mlr-t t.lme lnt..ervol

3000
'rime lnt:_rv_t

Jt OOO

.-.or1 '"'-•mor
-- r v •~o r-

5000

E'V'«""',....t Sydlna.v•••o• with 5 min t:lmo lnt:o rvnl

;«QOO :!1000
Tl.....-.- ln~rVM I

2000 3000
-r tme ln_.n,......,.-t

""IQOQ

◄000

r,c>,r,,, t 'lJme>r
-- rl,,m~r

-,ci,- I l_lf'Y'IOI

-- .-u•r•o,-

E 'V'e n t: Germ anwlngscr• • h vvlt.h 60 min t.lme Int.er-val

4 000 eooo uooo
Tlmo l nL.::tr--ftl

non rumor
-- .-,_.mor

1 0000 1~000

39

40

4.1.3.2 Decision Trees (DTs). DTs are used for classification and

regression. This supervised learning method predicts the target label by learning

simple decision rules derived from data features. Deeper trees have more complex

decision rules. DTs require little data preparation, and trees can be visualized. They

are suitable for both numerical and categorical data. Overfitting and creating biased

trees are well-known issues with DTs.

4.1.3.3 Gaussian Naive Bayes. Classification with the GaussianNB

model is performed by implementing Gaussian Na"1veBayes algorithm and the likeli­

hood of the features is assumed to be Gaussian. GaussianNB classifier updates model

parameters via a partial fit method, which is expected to be called many times to

implement out-of-core or online learning. The partiaLfit method has numerical

stability overhead. It is especially useful in handling a huge dataset that cannot fit

into memory all at once because it operates on different chunks of the dataset.

4.1.3.4 KMeans. KMeans clustering separates data samples into n

groups of equal variance. The required number of clusters should be specified. Its

operation is divided into three steps. In the first step, initial centroids are cho­

sen. Each sample is assigned to its nearest centroid in the second step. Finally,

in the third step, new centroids are created by calculating the mean values of all

the samples assigned to each previous centroid. Second and third are repeated until

centroids' positions become almost stable. The KMeans algorithm tries to minimize

the within-cluster sum-of-squares criterion.

4.1.3.5 Logistic Regression (MaxEnt). It is a linear model used for

classification and logit regression, or maximum-entropy classification are a few of its

other names. The logistic function is used to determine the probabilities of the target

label prediction. This model has a variety of solver techniques applicable to different

41

cases such as Ll penalty, Multinomial loss, and large datasets.

4.1.3.6 Multi-layer Perceptron (MLP). MLP is a supervised learn­

ing algorithm that consists of one or more hidden layers between input and output

layers. In the hidden layer, each neuron updates the previous layer's values with a

weighted linear summation, followed by a non-linear activation function. It can learn

non-linear models as well as real-time models. MLP validation accuracy is dependent

on weight initializations; it is sensitive to feature scaling, and hyperparameter tuning

is also required.

4 .1.3.7 Random Forests. Random Forest Classifier is an ensemble­

based method used for classification, anomaly detection, and regression problems.

ln random forests, bootstrap samples are drawn from the training set to build each

tree in the ensemble. While constructing a tree, a node is split by picking the best

split among a random subset of features. Due to this random selection of split, forest

bias slightly increases, which is compensated by reducing variance by averaging.

4.1 .3 .8 Sup p ort Vector Machines (SVMs). SVMs are supervised

learning models applied to outlier detection, classification, and regression problems.

SVMs decision function is dependent on support vectors, which are a subset of train­

ing data. C-Support Vector Classification (SVC) is based on libsvm implementation.

SVC can be implemented with different kernel functions such as linear, polynomial,

rbf, and sigmoid. Due to the complexity in fit time, it is difficult to scale large

datasets.

For each of these classification models, the researcher instantiated five different

sub-models (i.e., five instances per model) with respect to all of the five time-interval

time-series data, as shown in Figure 4.6. Each sub-model gets trained with its

corresponding time-series data and gives its prediction result. Once all the sub-

42

FIGURE 4.6 Multiple time-series data analysis model

:····· ···············:
C"lru-.,ific-111 ion n.,,ult

:'son-rumor ..--o
- 0

R11111or

model predictions are obtained, majority voting was performed to decide the final

prediction result and used it for calculating the ML model' s evaluation metrics. In

this work, a non-rumor is 0, and a rumor is 1. In the majority voting process, if

the overall sum of all the sub-model predictions is less than three, then the final

prediction is considered as non-rumor. Otherwise, it is a rumor.

4.2 Experimental Results

The experimental results are provided in this section.

4.2.1 Datasets. The researcher prepared five different sets of data from the

actual dataset using a 5-fold cross-validation technique, which means in each case one

event is selected as the test set and the other four events data are used for training.

This cross-validation technique helps in creating a real-time scenario by predicting

an event that is completely unknown to the classifier. Table 4.2 shows the number

of training and testing samples obtained using each event as a test set.

TABLE 4.2 Training and testing sets obtained using 5-fold cross-validation

Event as a test set No. of training samples No. of testing samples

Charlie Hebda 3,723 2,079

Ferguson 4,659 1,143

Germanwings Crash 5,333 469

Ottawa Shooting 4,912 890

Sydney Siege 4,581 1,221

43

4.2.2 Evaluation Metrics. Since the fake news detection problem in this

study is a binary classification task, the researcher used popular metrics such as

Precision, F l, and Recall for evaluating the proposed model's performance.

- True Positive (TP): when predicted as rwnors, which are annotated as rumors.

- True Negative (TN): when predicted as non-rwnors, which are annotated as

non-rumors.

- False Negative (FN): when predicted as non-rumors, which are annotated as

rumors.

- False Positive (FP): when predicted as rumors, which are annotated as non­

rwnors.

Precision _.-~l~T~P~1-­

I TP I+ I FP I
(4.5)

44

Recall - I TP I
ITPI + IFNI

(4.6)

1
=

2
Precision x Recall

F x Precision+ Recall
(4.7)

4.2.3 Results. Before considering the majority voting process to evaluate

ML models, the researcher had conducted a sample test using GaussianNB and MLP

classifiers without considering the majority voting of sub-models to see if any im­

provement in performance can be achieved by implementing majority votingprocess.

Table 4.3 shows the sample results of classifiers GaussianNB and MLP operating on

each test event with different time series data without applying the majority voting

process. Maximum Precision, Recall, and Fl scores for:

- GNB classifier is 0.629 for the Ottawa Shooting test event on 30min data, 0.555

for the Charlie Hebdo test event on 2min data, and 0.428 for the Sydney Siege

test event on 2min data, respectively.

- MLP classifier is 0.595 for the Ottawa Shooting test event on 1 Omin data, 0.533

for the Charlie Hebdo test event on 30min data, and 0.527 for the Charlie Hebdo

test event on 30min data, respectively.

In using the majority voting process, as discussed in Section 4.1.3, the results

are significantly improved with the GaussianNB classifier. Table 4.4 shows the per­

formance of ML models in terms of Precision, Recall, and Fl. ln the 5-fold cross­

validation process, the GaussianNB classifier outperformed all other models in terms

of Precision and F 1, irrespective of which event data served as the test set with con­

sistent and high Precision scores ranging between [87-97]%. A maximum Fl score of

68.9% was achieved with the GaussianNB classifier on Ottawa Shooting event data.

In contrast, a maximum Recall score of 100% was obtained with the MLP classifier

45

using event Germanwings Crash as the test set.

On the contrary, MLP classifier performance was drastically decreased with ma­

jority voting process in terms of Precision and F l scores. Birch and K-Means models

achieved good performance when events Gennanwings Crash, Ottawa Shooting, and

Sydney Siege were used as test sets. Logistic Regression, Multi-layer Perceptron,

and Support Vector Machine classifiers performed poorly in which the SVM classi­

fier achieved the poorest perfonnance.

Finally, the researcher calculated micro-averaged Precision, Recall, and FI using

equations 4.8, 4.9, and 6.15.

Precision = t=1 I TAI
micro ---'5,...._+-1 f"P'Pf't--+l--:i+~ 5--+I ""'FP~I

i=l i i=l .

5 ITAi
5 IF'N l
i=l I

Recallmicro = .
·c

O
PracisiJ~;j,l;J:x rhk:Qllmie,•a

FI nu r = 2 X PrecisiOTl.micro + Recallmicro

where i refers to each fold in the 5-fold cross-validation process.

(4.8)

(4.9)

(4.10)

In Table4.5, the micro-averaged results are shown. GaussianNB Classifier achieved

outstanding performance in Precision and Fl metrics. Birch and K-Means models

obtained almost similar results, but Birch was a little better. Decision Trees, Logistic

Re&1fession, Multi-layer perceptron, and Random Forest models achieved poor per­

formances with their Recall scores better than that of their Precision and Fl scores.

Support Vector Machines model achieved the poorest performance.

4.2.4 Discussions. The proposed time-series model performed well with some

ML models and got poor performance results with a few ML models. In the case

of the GaussianNB classifier, with its simplicity, fast computational capability, and

46

TABLE 4.3 Sample results for individual time intervals

T est eve nt/ C l ass ifie r T im e interval Precision R ecall F l

2 min 0.565 0.555 0.357
5 min 0.575 0.553 0.332

C h arlie H ebdo / GNB I Omin 0.570 0.544 0.313
301ni n 0.566 0.534 0.289
60min 0.565 0.530 0.279

2 m in 0.543 0.524 0.5 19
5 n "lin 0.543 0.5 18 0 .505

C h a rl ie H c b do / 1VILP I Ornin 0.559 0.5 14 0.486
30min 0.570 0.533 0.527
60m in 0.389 0.498 0.437

2 min 0.537 0.536 0.397
5 min 0.534 0 .527 0.360

Ferguson / GNB I O min 0.535 0.525 0.340
30m i n 0.525 0.5 15 0.317
601n in 0.528 0.5 18 0.32 1

2 m in 0.498 0.500 0.453
5 min 0.496 0.500 0.447

Fer g u son / M LP 10 ,nin 0.5 14 0.502 0.450
30min 0.59 1 0.503 0.439
60n ,in 0.376 0 .499 0.429

2 min 0.483 0.495 0.392
Sn.in 0.4 26 0 .482 0.364

German win gs Crash / GNB I 0 1nin 0.470 0.494 0.368
30min 0.407 0 .488 0.349
60rnin 0.446 0 .492 0.358

2 min 0.54 7 0.502 0.342
5 min 0.547 0.502 0.342

German -win gs C r ash / M L P l Om in 0.246 0.500 0.330
30min 0.246 0.500 0.330
60min 0.246 0.500 0.330

2 tnin 0.508 0 .502 0.407
5 min 0.543 0.509 0.398

O ttawa S h oot i n g/ GNB I Om in 0.566 0.509 0.384
30m i n 0.629 0.506 0.365
6 0 min 0.599 0.505 0.364

2 1nin 0.469 0.498 0.333
5 ,nin 0.486 0 .499 0.328

O ttawa S h ooting/ M LP l Omin 0.595 0.506 0.342
30m in 0.486 0.500 0.322
60min 0.236 0.500 0.32 1

2 min 0.58 1 0.536 0 .428
5 min 0.596 0.530 0.398

Syd ney S iege/ GNB I Omin 0.6 12 0.526 0.378
30min 0.6 16 0 .5 16 0.34 9
60min 0.606 0.5 12 0.339

2 min 0.487 0 .497 0.404
5 rnin 0.457 0.492 0.389

Sydn ey Siege/ MLP l On,in 0.486 0.497 0.395
3 0min 0.376 0.495 0.365
6 01nin 0.286 0.497 0.363

47

TABLE 4.4 Shows the experimental results with each event as a test set

Test event Model Precision Recall F1

Birch 0.662 0.197 0.304
DT 0.371 0.240 0.291

GNB 0.952 0.237 0.380
Charlie Hebdo KMeans 0.699 0.195 0.304

LR 0.076 0.232 0.115
MLP 0.046 0.304 0.080
RF 0.332 0.303 0.317

SVM 0.000 0.000 0.000

Birch 0.782 0.231 0.357
DT 0.215 0.260 0.235

GNB 0.870 0.258 0.398
Ferguson KMeans 0.641 0.218 0.325

LR 0.035 0.213 0.060
MLP 0.021 0.261 0.039
RF 0.116 0.277 0.164

SVM 0.000 0.000 0.000

Birch 0.908 0.516 0.658
DT 0.172 0.461 0.251

GNB 0 .937 0.502 0.654
Germanwings Crash K.Means 0.870 0.506 0.640

LR 0.021 0.625 0.041
MLP 0.013 1.000 0.025
RF 0.118 0.452 0.187

SVM 0.000 0.000 0.000

Birch 0.747 0.523 0.615
DT 0.170 0.533 0.258

GNB 0.974 0.533 0.689
Ottawa Shooting KMeans 0.743 0.521 0.612

LR 0.006 0.375 0.013
MLP 0.002 0.500 0.004
RF 0.132 0.614 0.217

SVM 0.000 0.000 0.000

Birch 0.561 0.420 0.481
DT 0.203 0.411 0.272

GNB 0.971 0.440 0.605
Sydney Siege K.Means 0.381 0.431 0.404

LR 0.048 0.373 0.085
MLP 0.033 0.333 0.059
RF 0.119 0.521 0.193

SVM 0.000 0.000 0.000

48

T ABLE 4.5 Micro-averaged results

M odel Precision Recall F l

BIRCH 0.702 0.323 0.443

DT 0.232 0.318 0.268

GNB 0.949 0.356 0.518

KMEANS 0.637 0.313 0.419

LR 0.040 0.278 0.069

MLP 0.024 0.324 0.045

RF 0.171 0 .374 0.235

SVM 0.000

ability to train well on a small dataset achieved the best performance with the pro­

posed time-series model. MLP classifier had limitations with its training process.

There is no guarantee it reached global minima during the training process. Thus,

it needs to be trained several times to find the training step with the best RMS

error. This makes the training process a time-consuming task. Another important

limitation of MLP was the hidden layer setting, which is set by the user. A very less

value of the number of hidden layer neurons may cause MLP underfitting issues. If

the value is too high, it may result in MLP overfitting. MLP classifier perfonnance

with the majority voting process may be improved by tuning training and hidden

layer parameters. SVM model achieved shocking results in the experimental analysis

because it predicted each whole test event set as rumors even though it contained

both rumors and non-rumors. According to Burges [41), kernel selection and dis­

crete data limit SVM performance. Since the time-series data was of pure integer

data type and the researcher tried only 'rbf ' kernel; SVM may have achieved the

poorest performance. Experimenting with different kernel options may improve its

49

performance.

4.3 Concluding Remarks for the Chapter

Verifying news credibility in social media is a challenging task as information

spreads rapidly. Fake news detection in social media is a well-known problem; many

of the existing studies used various features of social media posts to achieve better

fake news detection accuracy. Given a minimal amount of time to detect fake news

before they proliferate, there is an on-demand need for models to detect fake news

propagation in its early stages. In this study, the researcher proposed a multiple time­

series data analysis model that relies only on tweets' temporal characteristics for

detecting fake news on social media. With the proposed model, the researcher

significantly reduced the time required for training and testing processes as well as

reduced the computational complexity of ML models by taking advantage of numer­

ical data. The experimental results showed that with the time-series approach, a

high Precision score of 94% was achieved with the GaussianNB classifier.

50

CHAPTERS

RUMOR DETECTION ON TIME-SERIES OF TWEETS VIA DEEP

LEARNING

False information has become a weapon in cyberwarfare. How to detect false in­

formation effectively and efficiently on social media is a challenging problem. In this

study, a novel method of rumor detec.tion on Twitter tweets is proposed as a proof­

of-concept for the fast detection of false information on social media. Specifically, the

proposed method will use the tweets' propagation pattern to detect false informa­

tion rather than the contents. As a result, the proposed method was very effective

in reducing the dimensionality of the input feature set, and it required much less

computational time compared to content-based methods. Extensive experiments on

the PHEME dataset, a collection of Twitter rumors and non-rumors posted during

five breaking news, were performed to demonstrate the effectiveness of the proposed

method. The researcher also observed that deep learning models such as recurrent

neural networks outperfo1med classical machine learning models in terms ofmicro-F

score.

In this study, a novel rumor detection method was proposed by using the temporal

features of the data. The PHEME dataset1 was employed, which is a collection of

Twitter conversations with two classes: rumor and non-rumor, to demonstrate the

effectiveness of the proposed method. The temporal feature was built based on

the tweet timestamp, which transforms all Twitter conversation samples into simple

vectors representing the number of tweets/retweets along time (in different time

1https://figshare.com/articles/PHEME dataset of rumours and non-rumours/
4010619 - - - - -

51

intervals). The main features of the proposed method include:

_ Since only temporal features are used, there was no need for the extraction and

selection of complex features. This reduced the computational time dramati­

cally, which is critical for timely rumor detection.

_ The researcher generated the time-series data in pure numeric type, which was

very favorable to the classification models and can be readily inputted into a

model.

Extensive experiments were performed with both classical classifiers and deep learn­

ing models. It was observed that deep learning models such as recurrent neural

networks outperformed classical machine learning models by about 4% in terms of

micro-F score.

5.1 Rumor Detection Task

Definition to the rumor detection problem is provided here, which is followed by

an introduction to the PHEME dataset.

5.1.1 Problem Definition. Classification tasks in machine learning or deep

learning typically involve predicting class label(s) y for supplied input samples. The

current problem is a b inary classification task, where the end goal is to predict

whether a Twitter conversation sample is a rumor or not. Figure 5.1 shows the

structure of Twitter conversation samples. Each Twitter conversation sample will

have a source tweet and a set of reactions corresponding to that source tweet, in

which the reactions would be retweets or comments. Equation y = f(X) defines

the task, where y E {O, 1} in which O represents a non-rumor sample, and 1 represents

a rumor sample,f is a classification model, and Xis a never before seen data sample,

where the data sample is one Twitter conversation sample.

FIGURE 5.1 The structure of a Twitter conversation sample

Reaction I

A Twitter conversation sample

f Source tweet]

Reaction 2

52

1

Reaction n

5.1.2 Dataset. The PHEME [42] dataset is a collection of Twitter conver­

sation samples categorized into two classes (i.e., rumors and non-rumors), which

are related to five news events, namely, Charlie Hebdo, Ferguson, Germanwings

Crash, Ottawa Shooting, and Sydney Siege. For each of the five events, rumor and

non-rumor contents consists of the source-tweet and the reactions (a set of tweets

corresponding to that source-tweet). Overall, the dataset contains 5, 802 conversa­

tion samples, in which the number of rumor samples is I, 972, and the number of

non-rumor samples is 3, 830. Figure 5.2 shows the data distribution of the PHEME

dataset. The dataset had unbalanced nature both in terms of event-wise as well

as class-distribution-wise. For event-wise, event Charlie Hebdo had got the lion's

share of the dataset. Ferguson and Sydney Siege events had almost the same num­

ber of samples. Ottawa Shooting had a relatively decent number of samples, and

the Germanwings Crash event was the smallest of all the five events with only 469

samples. In the case of class-distribution-wise, only events Germanwings Crash and

Ottawa Shooting showed some decent balanced class nature, and other remaining

53

FIGURE 5.2 Shows the data distribution of the PHEME dataset

events exhibited unbalanced class nature, in which events Charlie Hebdo and Fergu­

son exhibited high class unbalance. The unbalanced nature has become the challenge

to accomplish the classification task.

5.2 Deep Learning Models

To complete the classification task, the researcher employed different deep learn­

ing models. Three recurrent neural networks (RNN), namely Long Short-Term Mem­

ory (LSTM), Gated Recurrent Unit (GRU), and Bi-directional Recunent Neural

Network (Bi-RNN), and one convolutional neural network (CNN) were used. Typ­

ically, an RNN consists of a hidden state h, and an optional output y for a given

variable-length input sequence x = (x1, · · · , x:r). At each time t, the hidden state

54

h(t) is given by [43]:

h (t) = j{b (t-1), Xt), (5. I)

where f is a non-linear activation function.

5.2.1 LSTM. Hochreiter and Schmidhuber developed LSTM m 1997 [44].

The basis for the evolution of the LSTM network is finding a solution to the vanish­

ing gradient problem in feedforward networks and learning long-term dependencies

present in the input samples. It is a special type of Recurrent Neural Network (RNN),

which consists of an information-carrying path across many time-steps to save in­

formation for later use, thus preventing older signals from gradually vanishing. The

major components of an LSTM unit are cell, input gate, output gate, and forget

gate. The function of the cell component is to remember values over arbitrary time

intervals, and the function of the three gates is to regulate the flow of information

into or out of the cell [45]. Each j - th LSTM unit has a memory cj at time t, and

the output hi Js given by [46]:

W = oitanh(d),
t t t

(5.2)

where cj is an output gate.

5.2.2 GRU. This model was developed by Chung et al. in 2014 (46]. Its

architecture is very similar to LSTM, but it is somewhat streamlined, making it

cheaper to run. However, it may not have the same representational power as that

of LSTM. It has a smaller number of parameters than LSTM due to the absence of

an output gate. It uses the update and reset gates to control the flow of information,

and the former is used in deciding how much of past information should be passed

along to the future. The latter is used to determine how much of past information

55

should be discarded [45]. The activation hit is the linear interpolation between hi t-1

and f?, which are previous activation and candidate activation respectively at time

t [46]:

hi= (1 - 7J)hi + zjfi,
t t t-1 l t

(5.3)

where 2/ is an update gate.

5.2.3 Bi-RNN. A traditional RNN is order dependent and processes the time­

steps in order. Altering the time-steps in an input sequence can affect the

representations extracted by RNNs. The Bi-RNN [47] exploits the order sensitivity

present in RNN and processes the input sequence, both chronologically and an­

tichronologically. In this way, the patterns which are overlooked by traditional RNN

can be identified. It has twice the number of parameters of a traditional RNN,

which makes it overfit quickly, but it can be controlled using some good regulariza­

tion techniques. It is very popular in natural language processing applications [45].

RNN variants GRU and LSTM layers were used in the experiments. The forward
and backward hidden sequences (i.e., ~and +-A for Bi-RNNs are given by:

where the W terms denote weight matrices, the b terms denote bias vectors, and H

is the hidden layer function [48].

(5.4)

(5.5)

5.2.4 CNN. As one special CNN, 1 D convnets are good alternatives to RNNs

for simple tasks, for instance, text classification and time-series forecasting. In oper­

ation, they basically extract local 1 D patches from sequences, which is similar to 2D

convolution layers. Since the same input transfonnation is applied to every patch,

56

once a pattern is learned at a position in a sequence, it can be identified later in a

different position. 1 D pooling of sequence data is also similar to 2D pooling, which

is used to reduce the length of 1D inputs. 1D pooling involves identifying the 1D

patches from the input and then outputting the values based on the chosen pooling

type, for example, maximum or average [45].

5.3 Experiment

The workflow is divided into two components: generation of time-series data for

each time interval (T), and training deep learning models to complete the classifica­

tion task.

5.3.1 Time-series Data Generation. The PHEME dataset contains five

events of rumor and non-rumor Twitter conversation samples. The researcher trans­

formed each of those conversations into time-series vectors for each time interval

T . Once transformed, each row in the time-series data structure represents one

whole conversation, and each of its columns is the total reaction counts with re-

spect to the chosen time interval step size. If E = {ei} is a set containing all

the five events, then for each event data Cij E ei represents individual conversation

samples. The PHEME dataset provides both rumor and non-rumor conversations

separately for all events. The researcher iterated over all those events. For every

conversation sample present in them, its source-tweet timestamp timeSource and its

timeReactions = {tn, tri., · · · , trn}, which is a collection of timestamps of all the

reactions corresponding to that source-tweet were extracted. The maximum length

N (c) of the vector representation for every conversation sample can be determined

by,

N(c) = max(timeReactions)- timeSource

T
(5.6)

57

For a conversation sample c, if (a, b] is the time interval limit for the k-th interval,

where k = I, 2, . • • , N (c) then the total count of reactions falling into that time

interval is given by,

countk = card(Q) (5.7)

where Q c timeReactions and Q = { x I x > a I\ x ::; i , and x is the timestamp

of a reaction (tweet) and cardinality measures the size of set Q, and the transformed

vector representation is as follows:

V (c)= [countk countk+l · · · countN] (5.8)

Then the final featw-e vector representation of conversation samples for each event

is given by

D

D V(ci)O

D V(ci)o
e, = □ □ (5.9)

O C
V(en)

Since vector representations have variable lengths, the researcher padded all of them

with Os at their tail end. For the experimental analysis, non-rumors and rumor

samples were labeled with Os and l s, respectively. Algorithm l shows the pseudocode

for generating the time-series data.

5.3.2 Training Deep Learning Models. Once the researcher completed

generating the time-series datasets, some basic data pre-processing using scikit-leam

Machine Leaming in Python library [26] were performed. In the experimental anal­

ysis, 5-fold cross-validation was performed, which means for every fold, one event is

Algorithm 1: Time-series data generation
Input: P
/* P is a data element containing file paths to all

sub-directories of all events E *I
Output: stores generated time-series data into' .csv ' files
initialize an empty dictionary var
forall sub.dir E P do/* sub..dir is a sub directory path present in

p ~

forall t E T do
L <

/* t = 2,5, 10,30,60
) forall c E sub. dir do
L <

I* c is a conversation sample present in sub_dir
) var(c] - empty list
a - timeSource
/* lower time interval limit
b ,__ timeSource + t
/* upper time interval limit
while True do

if b ~ max (timeReactions) then

I
append countk to var(c]
break

else

l append countk to var(c]
a.,_ b

b b +t

save var into a ' .csv 'file and clear it

*I

*I

*I

*I

58

used as a test set, and other remaining events constitute a training set. The train

and test sets proportions for all values of T are shown in Table 5.1.

TABLE 5.1 5-fold cross-validation train and test sets proportions for all values of
T

59

Selected Test £.vent Charlie Hebdo Ferguson Cerma nwings Crash Ottawa Shooting Sydney Siege

Train Set 3,723 4,659 5,333 4,912 4,581

Test Set 2,079 1,143 469 890 1,221

The cross-validation technique helped in mimicking the real-application scenario

because the event to be predicted was completely unknown to the classification

model. A subset (10%) of the training set was utilized for validation in the training

procedure. The researcher trained deep learning models by iterating over T. Since

the dataset had unbalanced class nature, class weights using sklearn's class_weight

library with a 'balanced'scheme were computed. Equation 5.10 [26] is used to cal­

culate the class weights.

. n.samples
class weights= .

(n..classes x bzncount(y))
(5. l 0)

where y is the 01;ginal class labels per sample, n .samples is the number of data

samples. n_classes is the number of unique class label values present in the dataset,

and bincount(y) counts the number of occurrences of each value in y of non-negative

integers. The researcher used the calculated class weights for weighting loss func­

tions during the training process. Another challenge in the training process is data

ambiguity. Some samples exist in the generated time-se1ies data with the same time­

series vector representation but different class labels. All of them were discarded to

60

achieve unbiased deep learning models' training. The researcher saved the shapes of

the generated train and test sets for each time interval and selected test event after

removing the duplicate samples and plotted the data distributions in Figure 5.3. It

is observed from Figw-e 5.3 that with the increase of time interval, the number of

duplicate samples increased, which caused a significant loss of data samples. Before

feeding the time-series data into deep learning models, the researcher had scaled

the data using sklearn's MinMaxScaler to normalize the data. Table 5.2 shows the

hyperparameter settings used for the NN models' training. All the NN models

FIGURE 5.3 Shows the time-series datasets distribution after removal of dupli­
cates

llOQ

JOOO

,.,,

IOm1"
.... ,

liO

are designed using Keras: The Python Deep Leaming Library {49}. They have only

one special layer (i.e., ConvlD, LSTM, BiLSTM, GRU, BiGRU) as their first hidden

layer, followed by Dropout, Flatten and output Dense layers. The dense output layer

61

TABLE 5.2 NN models' hyperparameter settings

Model Hidden layer units Dropout Optimizer Loss function

ConvlD 64 I Adam (0.0001) I Categorical

0.3
Cross-entropy

LSTM 32 I
BiLSTM 48 I

GRU 32 Adam (0.001) I Mean-Square Enor

BiGRU 48 V • .J

I

was activated using a sigmoid activation function. The Conv JD model ' s kernel size

is set to 3, and it is activated using a tanh function. The MaxPooling l D layer was

used with a pool size of 2 only for the Conv l D model to downsample the data before

applying Dropout and other layers. All the models had a batch input size of 64, and

their number of training epochs set to 100. The class labels were converted into a

binary class matrix.

5.4 Results and Discussions

The three key parameters in the analysis were time interval, test event, and the

neural network model.

5.4.1 Effect of Time Intervals. Figure 5.4 shows the mean values of vali­

dation accuracy scores of neural network models across T. As shown in Figure 5.4,

the performance of neural network models fluctuated up and down as the T value

was increased. The main observation was that when T is small, models Conv 1 D,

LSTM, and BiGRU performed well, which means they have made good use of the

subtle variations present in the long propagation patterns. However, when T gets

bigger, their performances decreased, and there was a significant performance drop

between T = 2 and T = 60 minutes. In contrast, models BiLSTM and GRU models

62

achieved good performances when Tis large. That means they are powerful enough

to overlook and identify the differences in the short propagation patterns, which is

a good sign for improving NN models· training time as the dimensionality of the

feature set gets reduced. Interestingly, their performances were improved by a de­

cent margin between T = 2 and T = 60 m inutes. Nonetheless, for T = I 0, the

performances of all the models were close to each other, which is not the case for

other time intervals.

FIGURE 5.4 5-fold mean validation accuracy scores of neural network models
across T

0.6

-0.55
~ -»
e> 0.5 ;
8
< 0.45

0.4
2

• ..
... • • • • • • • .J. •••• T

5 30 60
Time interval (minutes)

•• ·•· • Convl D • • ·•· · LSTM BiLSTM GRU ----BiGRU

5.4.2 Effect of Neural Network Models. From Figure 5.4, even though

T changes, the majority of the neural network models showed reasonable individual

time interval performance consistency. Again, for higher values of T, the models were

63

restricted to limited variations present in the propagation patterns of conversation

samples, causing them to lose their power to perform better classification. Overall,

neural networks that are designed using GRU and BiGRU layers achieved better

performance than other models for most of T's values due to their parameter size,

which was comparatively smaller than LSTM and BiLSTM layers. They have agood

gating mechanism, too, to control the flow of information. Moreover, as there was

a difference in performances among models for higher and lower values of T, using

some ensemble techniques on the individual models, in which each model gets its

best suitable time-series data may improve classification performance.

5.4.3 Effect of Test Events. It is known that the PHEME dataset is highly

unbalanced, as event Charlie Hebdo was dominant over all other events present in

the dataset. 1n Table 5.3, the validation results are shown for T = 2 min since it

was the time interval in which the best mean validation accuracy score was obtained,

which was 57.9% for the BiGRU model. These results were the validation accuracy

and loss values at the point where each deep learning model's training process was

completed (i.e., the last training epoch). The performance results of neural networks

were better when Ferguson is the test event. This is especially so in terms of training

loss because it offered a good rumor to the non-rumor sample ratio in the training set,

which was l, 688: 2, 971. However, when Charlie Hebdo is the test event, it offered

even better rumor to the non-rumor sample ratio, i.e., I, 514 : 2, 209. On the flip

side, compared to Ferguson being considered as a test event, the number of training

samples was more than that of Charlie Hebdo. If Ferguson is the test event, then

the total number of training samples is 4,659, and 3,723 total samples count in the

case of Charlie Hebdo as the test event. It means significant data loss has occurred

impacting NN models' training processes. Compared to events Charl ie Hebdo and

64

Ferguson, other remaining events constituted to poor rumor to non-rumor sample

ratio.

TABLES.3 NN models' validation results for T = 2 min (values are given in
[O - 1))

CoovlO LSTM BiLSTM GRU BiGRU
lime t.vent

Ace Loss Ace Loss Ace Loss Ace Loss Ace Loss

Charlie Hebdo 0.46186 0.81045 0.51271 0.32996 0.5 1271 0.33063 0.64407 0.35593 0.44492 0.55932

Ferguson 0.57947 0.66224 0.54636 0.26432 0.5 1987 0.28071 0.29139 0.70861 0.56291 0.27162
--

2min Germanwings Crash 0.5616 0.72854 0.54728 0.28441 0.48997 0.30552 0.51289 0.29355 0.69914 0.49854

Ottawa Sbooling 0.46894 0.78378 0.47205 0.31332 0.46584 0.31 12 0.50311 0.29545 0.47826 0.31342

Sydney Siege 0.45578 0.91026 0.71769 0.5 0.28231 0.71769 0.47619 0.33028 0.71088 0.5034

Mean 0.5055 0.7791 0.5592 0.3384 0.4541 0.3892 0.4855 0.3968 0.5792 0.4293

5.4.4 Other Observations. As the rumor detection problem is a typical

binary classification task, the researcher considered the evaluation mettic called Fl

score, which is the weighted average of precision and recall scores for evaluating the

classification models' performances. Calculations were done for the macro and micro

averaged testing results for all combinations of T and events E. Tables 5.4 and 5.5

include the mean of 5-fold cross-validation micro and macro averaged testing results

of neural network models with respect to T . The previous work results [28] are

shown in Table 5.6, which were obtained using classification models: Decision Trees,

Gaussian Naive Bayes, Logistic Regression, Multi-layer Perceptron, and Random

Forests only by considering the micro averaging scheme. ln this study, the researcher

was also interested in how the macro averaging scheme would impact the classification

models' performances. The researcher did not create separate instances for each

classification model as in previous work [28] to operate on each time interval time­

series data rather for all the neural network models used one static instance to work

65

on all combinations of T and E time-series data. In Tables 5.4 and 5.5, the micro­

averaged results were better than that of the macro-averaged results for all values

of T. Micro-averaged testing results were high for lower values of T. In contrast,

macro-averaged testing results were better in case of higher T values. For both the

averaging schemes, the results did not vary too much for all of the models with

respect to T , except in the case of the BiGRU model, where there was an almost

LO% performance difference. Model LSTM stood out as the top performer in the case

of a macro-averaging scheme by achieving a 49 .4% accuracy score for T = 30; and

when the micro-averaging scheme was used model BiGRU obtained a high accuracy

score. It was clear from the results shown in Table 5.6 that the researcher improved

the micro-Fl score by 4% roughly compared to a previous study.

In [5], content-based and social features were explored in the Twitter data con­

tained in PHEME dataset, where content-based included feature extraction methods:

Word Vectors, Pait-of-speech Tags, Capital Ratio, Word Count, Use of Question

Mark, Exclamation Mark, and Period; social features include: Tweet Count, Listed

Count, Follow Ratio, users'age, and account verification status. Conditional Random

Fields (CRF) classifier was the best model in their analysis, and its Fl scores were

0.606 and 0.339 for content-based and social features, respectively. When both these

heavyweight feature sets were used together. the CRF model 's Fl score was0.607. It

is a little improvement compared to the Fl score obtained with only content-based

features even after employing extensive feature engineering (i.e., social features ex­

traction) that describes how difficult it was to obtain slight performance gain using

this dataset.

On the other side, an increase in the complexity of the featw-e set may cause

extra cost in terms of data pre-processing requirements, computational capabilities,

and training time. The key observation was that as the T value increases, most

66

of the models' performance showed gradual decay in the case of a micro-averaging

scheme. A big difference exists in models' performances for T = 2 and T = 60.

This observation shows that as the sequence length of the propagation patterns of

Twitter conversations decreases, the subtle variations in the propagation patterns

were not explored by the classification models to properly classify the input samples.

ln the case of a macro-averaging scheme, the perfonnances of the classification models

improved for medium time interval lengths, i.e., T = 10 and 30 than that of lesser

values of T .

TABLE 5.4 Micro-averaged testing results in FI scores

Time interval Conv ID I LSTM BiLSTM I GRU BiGRU

2min 0.498 I o.522 0.49 I o.512 0.506

5min 0.496 I 0.474 0.478 I 0.478 0.564

!Omin 0.478 I 0.49 0.512 I 0.496 0.472

30min 0.454 I 0.514 0.496 I 0.498 0.502

60min 0.416 I 0.45 0.456 l 0.472 0.456

TABLE 5.5 Macro-averaged testing results in F I scores

Time interval Conv lD LSTM I BiLSTM GRU I BiGRU

2min 0.478 0.46 I 0.44 0.418 I 0.4 1

5min 0.488 0.464 I 0.458 0.468 I 0.41

I0min 0.458 o.478 I 0.486 0.476 I 0.458

30min 0.436 o.494 I 0.462 0.478 1 0 .47

60min 0.388 o.434 I 0.442 o.456 1 0.444

67

TABLE 5.6 Comparing current study with baselines

Previous study (baselines) I Current study

Model DT GNB LR MLP RF BiGRU

Fl 0.268 0.518 0.069 0.045 0.235 1 0.564

5.5 Concluding Remarks for the Chapter

For fast rumor detection in social meclia, a multiple time-series data analysis

approach was proposed. Compared to the literature's content-based methods, the

proposed method used only the temporal features of tweets. Because information

propagates fast on social media, the timely detection of false information using the

proposed method could deter the proliferation of false information before any un­

wanted disturbances occur in society. This approach is simple but very effective in

reducing the dimensionality of the input feature set, which helped improve train­

ing time and reduced the computational complexity of classification models because

of the nature of the generated time-series data. By experimenting with advanced

deep learning models, the researcher improved the micro-averaged Fl score by 4.6%,

compared to the baselines [28].

68

CHAPTE R6

ENSEMBL E DEEP LEARNING ON TIME-SERIES

REPRESENTATION OF TWEETS FOR R U MOR DETECTION IN

SOCIAL M E DIA

Social media is a popular platform for information sharing. Any piece of informa­

tion can be spread rapidly across the gJobe at lightning speed. The biggest challenge

for social media platforms like Twitter is how to trust news shared on them when

there is no systematic news verification process, which is the case for traditional me­

dia. False information, for example, detection of rumors, is a non-trivial task, given

the fast-paced social media environment. In this study, the researcher proposed an

ensemble model that performs a majority-voting scheme on a collection of neural

networks' predictions using time-series vector representation of Twitter data for the

fast detection of rwnors. Experimental results showed that neural network models

outperformed classical machine learning models in terms of a micro Fl score.

In this chapter, Twitter data's temporal features were explored for the timely

detection of rumors in sociaJ media. Tweet creation timestamp can readily be ex­

tracted from tweets, and there is no time delay to collect timestamp features. No

sophisticated data pre-processing is required to convert them into useful features to

train a classification model. Based on this observation, an ensem ble-based multiple

time-series analysis model was proposed using deep learning models for the timely

detection of rumors in social media. Specifically, time-series data were generated

by transforming Twitter conversations, where each conversation contains a list of

tweets, into times-series vectors that contain reaction counts as features, and fed as

69

input to deep learning models. The contributions of the proposed method are:

_ With the proposed method, computational complexity can be significantly re­

duced, as timestamps of tweets are needed rather than their contents or user

social engagements to perform feature extraction. Moreover, the extracted

feature set is of numeric type, which is amicable to classification models.

_ The proposed ensemble model improves classification models' perfonnances. It

uses the majority-voting scheme on multiple neural networks that are part of

the ensemble model and takes advantage of their strengths.

- The proposed method was validated on the PHEME1 dataset, and the perfor­

mance results demonstrate the effectiveness of the proposed scheme.

6.1 Problem Formulation

This section defines the rumor detection problem, provides an overview of tweets'

general features, and discusses breifly about the feature extraction method for parsing

Twitter data.

6.1.1 Rumor Detection. Rumor detection involved identifying whether a

data sample is a rumor or not. In machine learning, this kind of problem is termed as

a classification task, in which the classification model gets trained with an adequate

number of training samples and tries to classify a never before seen testing sample

as rumor or not. Therefore, the problem is given by g = f(X), where f is the

classification model, and Xis a completely new data sample (a Twitter conversation

sample that is transformed into a time-series vector) to it. The g is the prediction

of the classification model, and it has only two values since the PHEME dataset has

1https://figshare.com/articles/PHEME_dataset_ for_ Rumour_Detection_and_eracity_
Classification/6392078

70

two classes. In this study, the researcher used O's and l 's to represent non-rumor and

rumor samples, respectively, i.e., g E {O, 1 }.

6.1.2 General Features of Tweets. Typically, a classification task using

machine learning or deep learning requires the extraction of useful features from the

dataset. A variety of features can be extracted from Twitter data; for example, four

types of features were extracted from Twitter data to study the spread of anomalous

information in social media [50]. They are user profile features (users' friends and

fo llowers count), user network features (users' EgoNet features), temporal features

(retweet count), and content features (e.g., whether a tweet has question mark).

However, based on the theories of rumor propagation, authors in [36] considered

temporal features as one of the key properties for studying the spread of rumors since,

according to social psychologists, rumormongers have short attention. In this study,

for the fast detection of rumors on social media, the researcher solely focused on

the temporal features of Twitter data, which are the creation timestamps of tweets.

These timestamps can be readi ly fetched. This study strictly rel ied on them for the

generation of time-series data, which involved simple calculations, i.e., counting of

the number of tweets for given time interval limits.

6.1.3 Feature Extraction. In general, for Twitter data, the researcher used

a parser to read and extract the required information from it depending upon its data

type. In this study, the Twitter data utilized was available in JSON format. The

researcher used a suitable parser to read that information and extract the required

features, which are the creation timestamps of tweets.

6.2 Ensemble Learning

An overview to the ensemble learning and the proposed model are discussed next.

71

6.2.1 Overview of Ensemble Learning. Ensemble learning is a concept

in which many weak or base learners try to solve a single problem. An ensemble

contains many base learners, and its generalization ability is more powerful than

that of the base learners [51]. Ensemble methods work on a set of hypotheses derived

from training data rather than relying on one hypothesis. Constructing ensembles

is a two-step process. First, the required number of base learners are produced.

Secondly, all the base learners are grouped, and typically majority voting is applied

for classification problems, and weighted averaging combination schemes are used for

regression problems. Popular ensemble methods are boosting [52], bagging [53], and

stacking [54].

The Boosting method focuses on fitting multiple weak learners sequentially. Each

model in a sequence emphasizes the data samples that were badly treated by its

previous model. AdaBoost [52] algorithm is a good example of boosting, which

is simple and can be applied to data that is numeric, textual, etc. In the bagging

method, multiple bootstrap samples are generated from the training data, and a weak

independent learner is fitted for each of these samples. Finally, all the predictions

of weak learners are aggregated to determine the most-voted class. Randomf orests

[55] algorithm is a good example of the bagging method, one of the most accurate

learning algorithms and runs efficiently on large databases. In the stacking method,

using different learning algorithms, multiple first-level individual learners are created.

These learners are grouped by a second-level learner (meta-learner) to output a

prediction [54].

6.2.2 Bagging Learning. Bagging learning has been studied extensively in

the literature. Bagging, also known as bootstrap aggregation, is a popular ensemble

method that is useful in reducing the high variance o f machine learning algorithms. In

72

the bagging technique, several datasets are derived from the original training data set

by employing sampling with replacement strategy. That means some observations in

the derived datasets may be repeated. These datasets are used to train classification

or regression models, and outputs are typically weighted average for regression cases,

or majority voted for classification problems.

The majority voting grouping technique is used in [56, 57]. In [56], the ensemble's

bagging method is used with REPTree as a base classifier for an intrusion detection

system and compared to other traditional machine learning techniques. It was shown

that the ensemble bagging method achieved high classification accuracy by employ­

ing the NSLKDD dataset. Authors in [57], proposed to use dictionary learning with

random subspace and bagging methods and introduced Random Subspace Dictio­

nary Learning (RDL) and Bagging Dictionary Leaming (BDL) algorithms. Their

experimental analysis concluded that ensemble-based dictionary learning methods

performed better than that of single dictionary learning.

The weighted averaging grouping technique is employed in [58, 59]. In [58], the

Neural Network Ensemble (NNE) approach was proposed to improve the general­

ization ability of neural networks and to reduce the calculation errors of Density

Functional Theory (DFT). It is shown that both simple averaging and weighted av­

eraging grouping techniques helped in improving DFT calculation results. Authors

in [59] proposed a method for improving image classification performance using SVM

ensembles. Optimal weights for the base classifiers in the SVM ensemble are esti­

mated by solving a quadratic programming problem. These weights are then used

to combine the base classifiers to form an SVM ensemble.

The optimization of a generic bagging algorithm was studied in [60]. The authors

added an optimization process into the bagging algorithm that focuses on selecting

better classifiers, which are relatively efficient, and proposed Selecting Base Classi-

73

tiers on Bagging (SBCB) algorithm. Experimental results proved that their SBCB

algmithm performed better than the generic bagging approach.

6.2.3 Deep Bagging Learning. Because deep neural networks are nonlin­

ear methods and have high variance, ensemble learning can combine the predictions

of multiple neural network models to achieve less variance among the predictions and

decrease the generalization error. An ensemble method is applied to neural networks

mainly by (1) varying training data (data samples used to train models in the en­

semble are varied), (2) varying choice of the models in the ensemble, and (3) varying

the combination techniques that determine how outputs of ensemble members are

combined.

In [61], the authors proposed a method that used the Convolutional Neural Net­

work (CNN) and the deep residual network (ResNET) ensemble-based classification

methods for Hyperspectral Image (HSI) classification. Their proposed method used

deep learning techniques, random feature selection, and majority voting strategy.

Moreover, a transferring deep learning ensemble was proposed to make use of the

learned weights of CNNs. In [62], two cooperative algorithms, namely NegBagg (bag­

ging is used) and NegBoost (boosting is used), were proposed for designing a neural

network (NN) ensembles. These algorithms used a negative con-elation algorithm

while training NNs in the ensemble. Applying these models to well-known problems

in machine learning showed that with a lesser number of training epochs, compact

NN ensembles with good generalization were produced.

In [63], a bagging ensemble was proposed to improve the prediction performance

of artificial neural networks (ANN) to tackle the bankruptcy prediction problem.

Experimental results showed that the proposed method improved the performance of

ANNs. Bagging technique using an ANN is proposed to address imbalance datasets

74

on clinical prediction in [64], and expe1imental results showed that this method

improved the prediction performance.

6.2.4 Overview of the Proposed Model. The proposed model has two

key components: a data pre-processing method and an ensemble model. First, raw

Twitter conversations were processed to transform them into the required data for­

mat, and then the transformed data was supplied to the ensemble model to perform

the classification task. The ensemble model consisted of six different neural networks

(base learners) tr ained using the generated time-series data. Their predictions were

grouped so that the majority voting scheme was applied to determine the outcome

as rumor or non-rumor.

6.3 Methodology

FIGURE 6.1 Shows the proposed model for rumor classification taking Twitter
conversations as input, which are cleaned in the data pre-processing block and fed
as input to the ensemble model that performs the majority voting to determine the
final prediction

,-
l\\itter

con,ersations -utrum orl\lttts

Data pre-processing

E.\U'3C1

timestamps

Generate time-series
data

Pre-process
t ime-seri~ data

Ensemble model

➔ Final
prediction

75

The structure of the proposed model is shown in Figure 6. 1. The model takes

Twitter conversations as input, where each conversation is a stream of tweets that

contains source-tweet and its corresponding reactions. In the data pre-processing

stage, every tweet is parsed and its creation timestamp value is extracted. Once all

tweets were parsed, time-series data for different time intervals were generated and

conducted data cleaning. Then, the cleaned data were fed as input to the ensem­

ble model. The ensemble model has n base learners, which are n different neural

networks represented as m1, m2, · · · , mn, where each of them yields its prediction

results (i.e., ri, 1'2, · · · , rn). Finally, the majority-voting process was performed on

all the predictions of those base learners, i.e., summing up all the prediction results

and deciding the final prediction result as O (non-rumor) if the total sum was less

than Ln/2J + I or as 1 (rumor) otherwise.

6.3.1 Neural Networks Models Considered. The ensemble model con­

stitutes base learners designed using Recurrent Neural Network (RNN), Long Short­

Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bi-directional Recurrent

Neural Network (Bi-RNN). Six base learners were designed in this work: BiGRU,

BiLSTM, GRU, LSTM, LG (a combination of LSTM and GRU layers), and RNN.

6 .3.1.1 RNN. An RNN is a type of neural network that processes se­

quences by iterating through the sequence elements [45]. Typically, it consists of a

hidden state h, and an optional output y for a given variable-length input sequence

x = (x1, · · · , X7'). At each time t, the hidden state h (t) is given by [65]:

h (t) = flh{t-1), Xt), (6. 1)

where f is a non-linear activation function. The researcher used Keras' SimpleRNN

[49] layer in the experiments.

76

6.3.1.2 LSTM. It is a special type of RNN and was developed by

Hochreiter and Schmidhuber in 1997 [66]. It consists of four major components:

cell, forget gate, input, and output gates. Component cell functions to memorize

values over arbitrary time intervals and three gates regulate the flow of information

into or out of the cell [45]. Each jth LSTM unit has a memory c/ at time t, and the

output Htis given by [67]:

hj = d tanh(d),
t t t

(6.2)

where cl is an output gate.

6.3.1.3 GRU. Chung et al. in 2014 [67] developed Gated Recurrent

Unit, which has an architecture similar to ~STM. There is no output gate in GRU,

which means it has a lesser number of parameters than LSTM. To control the flow of

information, it uses the update and reset gates. These gates decide how much of past

information should be passed along to the future or discarded [45]. The activation

hi is the linear interpolation between hi and h!, which are previous activation and
t ~1 t

candidate activation respectively at time t [67]:

(6.3)

where 2/ is an update gate.

6.3.1.4 Bi-RNN. A traditional RNN processes the t ime-steps in or­

der, whereas Bi-RNN [68] exploits the order sensitivity present in RNN. The input

sequence can be processed in forward and reverse directions. It may have overfitting

issues as it has twice the number of parameters of a traditional RNN. However, over­

.fitting problems can be controlled by employing good regularization techniques (45].

The researcher employed RNN variants GRU and LSTM layers in the experiments.

77

The forward and backward hidden sequences (i.e., _, and ,_) for Bi-RNNs are given
h h

by:
_, -t

ht= H(Wxli'Xt + W,;,; ht-1 +b-;;)

where the W terms denote weight matrices, the b terms denote bias vectors, and H

is the hidden layer function [69].

(6.4)

(6.5)

Once the base learners (m1, m2, · · · , mn) complete their training procedmes, the

ensemble model combines all of their predictions and performs majority voting pro­

cedure on them to determine the ensemble model ' s evaluation metrics. First, the

researcher created the proposed ensemble model that consisted of six base learners.

Then, the researcher experimented on the proposed model by tuning its hyperpa­

rameters such as its batch input size and learning rate. New ensemble models were

created using RNN, LSTM, and GRU layers to obtain a comprehensive set of results

to efficiently analyze and determine the effectiveness of each ensemble model in de­

tecting rumor Twitter conversations. Variants of the ensemble model will also have

six base learners.

6.3.2 Implementation-I. In implementation-I, each of five base learners

(BiGRU_l , BiLSTM..1 , GRU_l, LSTM.-1 , and simple RNN_l) had one hidden layer,

and the sixth based learner (LG 1) had two hidden layers, followed by one Dense out­

put layer. For all the base learners, the number of hidden layer units was determined

based on the integer value obtained from (seq len + 2)/2, where seq_ len was the

length of the feature set (i.e., vector length of the time-series data). Constant 2 was

used because the number of classification outputs was two (rumor and non-rumor).

The researcher considered this approach following one of the rule-of-thumb methods,

78

which states that the number of hidden layer neurons should be between the input

layer·s size and the s ize of the output layer [70). Rand Uniform kernel initiali,er \\US

used for all the hidden layers with values (-0.5, 0.5). sigmoid activation was appltt.-d

only to the RNN model 's hidden layer, and the Flatten layer was applied only to

BiGRU and BiLSTM models to flatten the data before the final output Dense layer

that was activated using softmax function. Adam optimizer was used with a leam­

ingrateofl .00E-05 along with a categorical cross-entropy loss function. The batch

input size was set to 32, and the nwnber of epochs was 300. The Dropout technique

was not used with these models since their architectures were simple. and using 11

may have caused under-fitting issues. The variants of the proposed model follo\\cd

the same neural network design except for the hyperparameter that are tuned. for

example, the batch input size and learning rate.

T ABLE 6.1 Configurations of NN models

NN model # of hidden layers Hidden layer units Dropout

RNNJ

GRU_l (seq. [en+ 2)/2 A

LSTMJ

RNN..2

GRU--2 3 16,32,64

LSTM1
0 25

RNN3

GRU3 2 64,32 -
LSTM3 -

79

6.3.3 Implementation-II. Six base learners (RNN. l, RNN.2, RNN3,GRU_l,

GRU2, and GRU 3) were used in th.is implementation. To create new ensembles

with new base learners, RNN, LSTM, and GRU layers were used. For instance, for

base learners designed using the RNN layer, the researcher reused the RNN 1 base

learner designed for implementation-I and new base learners were created by adding

extra hidden layers with increasing (RNN 2) and decreasing (RNN 3) number of hid­

den layer units. The configurations of the base learners are shown in Table 6.1. All

these base learners had the final output dense layer with softmax activation and loss

function as categorical cross-entropy. Rand Uniform kernel initializer was applied

with values (-0.5, 0.5). The number of training epochs was set to 300. For RNN -1,

GRU_l, and LSTM J base learners in Table 6. l, seq_len was the feature set's length.

6.3.4 Implementation-ill. Similar to implementation-II, six base learn­

ers (RNN_l , RNN...2, RNN-3, LSTM_l, LSTM-2, and LSTM3) were employed in

implementation-III. The hyperparameters were set similarly.

6.4 Dataset

The PHEME dataset, time-series data generation, and data pre-processing on

the time-series data are discussed next.

6.4.1 PHEME Dataset. In this study, the researcher used the PHEME

[71) dataset of rumors and non-rumors, consisting of Twitter conversations for nine

different newswo1thy events. The distribution of the dataset is shown in Table 6.2.

The basic structure of conversation samples is shown in Figure 6.2. Each conversation

sample has a source-tweet and a set of reactions along time, where reactions express

their opinions towards the claim contained in the source-tweet.

As shown in Table 6.2, this dataset exhibits severe event-wise and class-wise

80

TABLE 6.2 The PHEME dataset with nine events

Event Rumors Non-rumors Total

Charlie Hebdo 458 1,621 2,079

Ferguson 284 859 l ,143

German wings-crash 238 231 469

Ottawa shooting 470 420 890

Sydney siege 522 699 1,221

Gurlitt 61 77 138

Putin missing 126 112 238

Prince Toronto 229 4 233

Ebola Essien 14 0 14

Total 2,402 4,023 6,425

unbalanced nature. For example, event Charlie Hebda was dominant over all other

events present in the dataset in terms of the number of samples causing event-wise

unbalance. In general, the number of non-rumor class samples was way more than

the number of rumor class samples, which was class-wise unbalance in the dataset.

The experimental analysis excluded events Prince Toronto and Ebola Essien as

they had extremely unbalanced proportions of rumors and non-rumors and trimmed

down the dataset to seven events. For example, the Ebola Essien event had zero

number of non-rumor class samples. The basic statistics of the PHEME dataset

with seven events are shown in Table 6.3. Overall, the PHEME seven events dataset

had 6, 178 data samples, in which non-rumor class samples were almost double the

number of rumor class samples.

6.4.2 Generation of Time-series Data. The researcher explored the tem­

poral features of Twitter data for the timely detection of rumors in social media.

FIGURE 6.2 Structure of a Twitter conversation sample

source-tweet
(beginning of a conversation)

i
!

•

•••

81

------1-----------time (T---------------
----·-···-·v~---·

A group of 'n 'reactions express their opinions towards
the claim contained in the source-tweet

Specifically, time-series data were generated by transforming Twitter conversations,

where each conversation contains a list of tweets, into time-series vectors that contain

reaction counts as features, and fed as input to deep learning models. Each of the

Twitter conversation samples present in the PHEME seven events dataset were trans­

formed into a time-series vector for each time interval T , where T = {2, S, 10, 30, 60}

minutes. After the successful transformation of all conversations into time-series

data, each vector represented one whole conversation. Each of its values was the

total reaction counts with respect to T.

Denote E = { ei} the set that contains data of seven events present in the dataset,

then, for each event data e;, CiJ is a conversation sample related to that event. As

82

TABLE 6.3 Distribution of the PHEME dataset with seven events

Event Rumors Non-rumors Total

Charlie Hebdo 458 (22.03%) l ,621 (77.97%) 2,079

Ferguson 284 (24.85%) 859 (75.15%) 1,143

Germanwings Crash 238 (50.75%) 231 (49.25%) 469

Gurlitt 61 (44.20%) 77 (55.80%) 138

Ottawa Shooting 470 (52.81 %) 420 (47.19%) 890

Putin missing 126 (52.94%) 112 (47.06%) 238

Sydney Siege 522 (42.75%) 699 (57.25%) 1,221

Total 2, 159 (34.95%) 4,019 (65.05%) 6,178

the dataset had conversations separated by event, the researcher iterated over all the

events one by one. For every conversation sample present in each iteration, the re­

searcher extracted timestamps of its source-tweet timeSource (starting point of the

conversation) and its timeReactions = { tri, tn., · · · , trn}, which is a set of times­

tamps of all the reactions co1Tesponding to that source-tweet. For a conversation

sample, its length N (c) is determined by,

N(c) = max(timeReactions) - timeSource
7

(6.6)

Assume c represents a conversation sample, if (a, b] is the time interval limit for the

k-th interval, where k= 1, 2, · · · , N(c) then the total reactions count for that time

interval is given by,

countk = card(Q) (6.7)

where QC timeReactions and Q = { x I x > a I\ x .$ b~ xis the timestamp

of a reaction (tweet) and cardinality is the measure of the size of set Q, and the

83

transformed vector representation is as follows:

V (c) = [countk countk+ 1 · · · countN] (6.8)

The final vector representation of all conversation samples for each event is given by,

~ =

□ V(Qb

0 V(Cl)o

D D
C C

V(cn)

(6.9)

The flow chart of transforming Twitter conversations into time-series vectors for all

combinations of E and Tis given in Figure 6.3.

6.4.3 Data Pre-processing. The second step in the data preparation pro­

cess was to reduce the data sparsity of the time-series data since the vector length

of aU data samples were decided by the longest conversational sample with respect

to T. To tackle this problem, the researcher applied skleam's dimensionality reduc­

tion method called TruncatedSVD [72]. The time-series data were normalized using

sklearn's MinMaxScaler [72] and removed duplicate data samples with the same fea­

tures with different ground truth values.

Finally, The researcher calculated class weights by using sklearn' s class _weight

[72] library with a balanced scheme since the PHEME dataset exhibited an unbalance

class nature. Class weights were used in weighting loss functions during the training

process, which means the higher weight was given to minority class and lower weight

FIGURE 6.3 The flow chart for transforming Twitter conversations into time­
series vectors

(__ s ta_rt _)

Twitter
conversations

y

read source-tweet and
find the o riginating

timestamp

I ..
read a l I the reactions corresponding to

the source-tweet and find their
timestamps

l
calculate the count of

reactions for al I the
intervals w.r.t T

Generated time­
series data

•
(____ Exi_t _)

84

to the majority class. The class weights were computed using the equation below 6.10.

class weights= .) (n.dasses X bmcount(y)

n.samples (6.10)

where y represents the actual class labels per sample, n classes is the count of unique

85

class label values existing in the dataset, n .Bamples is the number of data samples,

and bincount(y) counts the number of occurrences of each value in y of non-negative

integers.

6.5 Experimental Analysis

In this section, the evaluation metrics of the proposed model are discussed, and

experimental results are shown.

6.5.1 Evaluation Metrics. The Fl-score, which is the weighted average of

Precision and Recall scores, was used as the ensemble model's evaluation metric. The

researcher considered the F 1-score metric with micro and macro averaging schemes

for evaluating the performances of the ensemble classification models. In general,

the Fl-score is calculated by using equation (6.11).

F 1 = 2 precision x recall
x precision+ recall

(6.11)

where precision and recall scores tell the strength of a classifier.

In the macro averaging scheme, Fl-score is calculated using equation (6.13).

Macro Fl-score uses precision and recall scores for each class label and finds their

unweighted mean. In a micro averaging scheme, FI-score is determined using equa­

tion (6.15), and micro FI-score uses global metrics, which means precision and recall

scores are calculated by counting all the true positives (TP), false positives (FP),

and false negatives (FN) across all classes.

Pmacro=

Rmacro =

n
i=l.Pi

,(1-
i=l ri

n

(6.12)

86

Fl = 2 X Pmacro X Rmacro
macro Pmacro + Rmacro

(6.13)

n TH
i=l I

Pmicro = --=l~-1--;1""''R,..'i ·+---,,F""''R~i

?=i TPi
Rmicro = --11---''---"----.1\-T

i=l TPi + F 1vi

(6.14)

P, · X R · Fl . = 2 X micro micro
micro P micro + R micro

(6.15)

In the above equations, P and R represent precision and recall values for a given

averaging scheme (macro or micro), i represents a class label, pi, and 77 are the

precision and recall scores for the ith class label. TH, FA, and FN; are the true

positives, false positives, and false negatives for the ith class label. n is the total

number of classes.

6.5.2 Experimental Results. In Table 6.4, the current chapter' s best micro­

averaged scores of Precision, Recall, and F l were compared with the previous chap­

ters' best micro-averaged results. The researcher improved the rumor classification

perfonnance by a decent margin with the proposed ensemble-based deep learning

model in terms of micro-Fl. The improvements were 12.5% and 7.9% for Kotteti

et al., 2018 and Kotteti et al., 2019, respectively. The rest of this section discusses

hyperparameters' influence, such as batch input size and learning rate on the classi­

fication model 's performance.

6 .5 .2.1 Fixed Batch Input Size. The testing results when the batch

input size is fixed are shown in Tables 6.5 and 6.6 . These testing results were the

mean micro and macro averaged F l scores of all events obtained using leave-one­

event-out cross-validation across T by varying learning rates for Tables 6 .5 and 6.6,

respectively.

In Table6.5, for T = 2 and 5 min, the micro-F l scores of the ensemble I-1

87

TABLE 6.4 Comparison of current study to Kotteti's previous studies

Previous studies
lV1Cll ll: Kotteti et al., 20 18 Kotteti et al., 2019 \....,UllC::lll :stuuy

Micro-Precision 0.949 0.564 0.643

Micro-Recall 0.374 0.564 0.643

Micro-Fl 0.518 0.564 0.643

are better than that of the ensembles 1-2 and 1-3 across the chosen learning rates.

This may be because it had more ensemble diversity than other ensembles (i.e., the

presence ofbase learners designed using Bi-directional RNNs and a model with hybrid

architecture that contains a pair of LSTM and GRU layers). In these time intervals,

the best scores for the ensemble I-1 were obtained for learning rate l .50E - 05.

However, when T = 5 min, the ensemble 1-3 performed poorly across all the chosen

learning rates and T.

When T = 10 min, the ensemble 1-1 outperformed ensembles I-2 and 1-3 for

learning rates l.00E-05 and l.S0E-05. In the case oflearning rate 5.00E-06, the

ensemble I-3 surpassed other ensembles. From this interval onward, the ensemble l-3

started to improve its performance for higher time intervals, w.r.t the chosen learning

rates. In this case, the higher the time interval, the better the performance for the

ensemble 1-3. It is this time interval, where ensembles I-1 and 1-2 performed weakly

across T.

For T = 30 min, the ensemble 1-3 achieved maximum micro-Fl score for learning

rates 5.00E-06 and l .S0E-05. The ensemble 1-1 obtained maximum micro-FI score

for learning rate 1.00E-05. However, the micro-Fl scores of the ensemble I-2 across

the learning rates were very low compared to the other ensemble implementations in

88

TABLE 6.5 Shows the mean micro averaged F 1 testing results of all events that
were obtained using leave-one-event-out cross-validation across Tby varying learn­
ing rate

Micro-Fl
• u1u: uau:rvaa I L~an1111g 1.·utu: j l-l 1-2 1-3

5.00E-06 I 0.53986 I 0.52801 I 0.52835

2 min l.00E-05 I 0.55231 I 0.53131 I 0.53537

l .50E-05 I 0.56656 I 0.53399 I 0.50439

5.00E-06 I 0.43673 I 0.43128 I 0.3936

5 min l.00E-05 I 0.43809 I 0.4 I 99 I 0.39489

1.50E-05 I 0.44764 I 0.41844 I 0.40408

5.00E-06 I 0.43347 I 0.455 15 I 0.46869

10 min l .00E-05 I 0.43594 I 0.4086 I 0.41396

1.50E-05 I 0.42631 I 0.40358 I 0.41814

5.00E-06 I 0.55092 I 0.43766 I 0.5524

30 min l .00E-05 I 0.54492 I 0.42296 I 0.53995

l .50E-05 I 0.53428 I 0.45717 I 0.5394

5.00E-06 I 0.55717 I 0.58966 I 0.6116

60 min l.00E-05 I 0.61769 I 0.56448 I 0.62146

l.50E-05 I 0.619 I 0.55943 I 0.59565

89

TABLE 6.6 Shows the mean macro averaged Fl testing results of all events that
were obtained using leave-one-event-out cross-validation across T by varying learn­
ing rate

Macro-F l
• llllt:: Ullt::CViU Lt::arnaug n.al.t:: 1-1 1-2 1-3

2 min

5 min

10 min

30 min

60 min

5.00E-06

1.00E-05

l.50E-05

1 o.44878 I o.38891 I o.311 19

1 o.46329 1 o.39504 I o.38406

1 o.49849 1 o.38397 I o.39 l 08

5.00E-06 I 0.4 l 544 I 0.35804 I 0.29844

l.00E-05 I 0.42368 I 0.35859 I 0.3125

l.50E-05 I 0.42362 I 0.371 I 0.34597

5.00E-06 \ 0.34527 \ 0.33345 I 0.33153

l.00E-05 I 0.35471 I 0.31419 I 0.31294

l.50E-05 I 0.34021 I 0.32128 I 0.32075

5.00E-06 I 0.37669 I 0.32084 I 0.34954

l.00E-05 I 0.38528 I 0.31908 I 0.36389

1.50E-05 I 0.38588 I 0.31528 I 0.38077

5.00E-06 I 0.42367 I 0.39506 I 0.45095

I .00E-05 I 0.48757 I 0.39201 I 0.45083

l.50E-05 I 0.48163 I 0.38864 I 0.43825

90

this time interval.

For T = 60 min, the ensemble 1-3 outperformed other ensembles in terms of

the maximum micro-Fl score for learning rates S.OOE - 06 and l .OOE - OS. It

was this time interval where all ensembles obtained their maximum micro-Fl scores

across T for all chosen time intervals. The ensemble 1-3 achieved the overall best

micro-F 1 score of 62.1 % for the learning rate of l .OOE - 05. In this time interval,

ensembles 1-1 and 1-3 were better than that of the ensemble I-2. The more diversity

of ensemble I-1 and the ensemble I-3 with its base learners having LSTM layers that

have better representational power than GRU layers outplayed ensemble 1-2 (base

learners without LSTM layers). Nonetheless, ensemble 1-1 and I-3 results are similar

to each other.

From Table 6.6, for T= 2, 5, IO and 30 min, the macro-Fl scores of the ensemble

1-1 were better than that of the ensembles 1-2 and I-3 across the chosen learning rates.

And again, this may be due to the presence of more diversified base learners in the

ensemble 1-1 that helped to surpass other ensembles. The ensemble I-1 achieved top

performance for learning rate 1.SOE-05 when T = 2 min, for learning rate l .OOE-05

when T= 5 and 10 min, and forlearningrate I.SOE-OS when T = 30 min. However,

when T = IO and 3 0 min, the performance of the ensemble I-1 dropped down across

the learning rates compared to T = 2 and 5 min. Since for higher time intervals, the

lengths of time-series data sequences became shorter, thus maybe overlooking small

propagation patterns present in the time-series data. The time interval T = IO min

contributed to the overall poor performance of the ensemble I-1. The ensembles l-2

and I-3 performed poorly when T = 30 and S min, respectively.

For T = 60 min, the ensemble I-I outperformed others in terms of the best

macro-Fl score for learning rates 1.00E - OS and I .SOE - 05. When the learning

rate was S.OOE - 06, the ensemble 1-3 surpassed other ensembles. Moreover, in this

91

time interval, for ensembles 1-1 and I-2, the results were almost on par with the

results that they achieved when T = 2 m in. In this time interval, the ensemble 1-3

achieved its overall best performance across T. The overall best macro-Fl score was

obtained by the ensemble I-1 when T = 2 min and a learning rate of l .SOE - 05.

Furthermore, ensembles 1-1, 1-2, and I-3 performed better in terms of both micro­

F l and macro-F 1 scores when T = 60 min over other time intervals with respect to

the chosen learning rates. The only exceptional case was that the ensemble 1-1

performed well in terms of the macro-Fl score when T = 2 min over other time

intervals with respect to the chosen learning rates. In general, both the results

showed the fact that the performances of ensembles are better when Tis either too

low (i.e., 2 min) or too high (i.e., 60 min). This presents us a chance to select a time

interval based on the requirement. For example, if early detection is important, pick

a lower time interval value; and in the case of effective prediction as a concern, than

select a higher time interval value.

In addition to this, the IO min time interval caused most of the ensemble im­

plementations, particularly the ensemble 1-1, to achieve low performance for both

micro and macro averaging schemes. This may be due to the propagation patterns

extracted based on this time interval value do not have necessary variations such that

classification models can take advantage of them. On the other hand, the ensemble 1-

3 was clearly unhappy with 5 min time interval for both averaging schemes as a

lower time interval value was subjected to have high data sparsity, which may be the

cause for LSTM based ensemble 1-3 to perform weakly in this time interval.

6 .5.2.2 Fixed Learning Rate. In the case of a fixed learning rate,

the testing results are shown in Tables 6.7 and 6.8. These testing results were the

mean micro and macro averaged F 1 scores of all events that were obtained using

TABLE 6.7 Shows the mean micro averaged Fl testing results of all events that
were obtained using leave-one-event-out cross-validation across T by the varying
batch input size

Micro-Fl
.111111:: uu1::rva1 nau;u UIJJUl ~lLt: 1-1 1-2 1-3

16 I o.510131 o.48588 I o.50378

2 min 32 I o.55231 I o.53131 I o.53537

64 I o.540891 o.51473 I 0.52323

16 I o.48062 I o.4534 I 0.42757

5 min 32 I o.438091 0.4199 I o.39489

64 I 0.44371 I o.464731 0.41045

16 I 0.440061 0.433321 o.48341

10 min 32 I o.435941 o.4086 I o.41396

64 I o.43322 I o.422061 0.42

16 I o.51484 I o.4s42 I o.50053

30 min 32 I o.54492 I 0.42296 I o.53995

64 I o.55006 I 0.451091 o.54926

16 I o.5789 I o.5619 I o.46469

60min 32 I o.61769 I o.56448 I o.62146

64 I o.57902 I o.58511 I o.64331

92

TABLE 6.8 Shows the mean macro averaged Fl testing results of all events that
were obtained using leave-one-event-out cross-validation across Tby vruying the
batch input size

.l llllt: U1lt:rva1 D.tlCU .llll'U l ~I.Lt:

16

2 min 32

64

16

5 min 32

64

16

IO min 32

64

16

30 min 32

64

16

60 min 32

64

Macro-Fl
1-1 1-2 1-3

1 o.44335 I o.39693 I o.38611

1 o.46329 I o.39504 1 o.38406

1 o.43664 I o.3692 I o.36674

1 o.4367 1 0.31214 1 o.35665

1 o.42368 I o.35859 1 o.3 125

I o.38113 I o.32 1 0.32925

1 o.34352 1 o.32805 I o.35568

I o.35411 I 0.3 1419 1 o.31294

I o.350041 o.31881 I o.32688

I o.37424 I o.30853 1 o.3749

I o.38528 I o.31908 1 o.36389

1 o.382051 o.301221 o.34899

1 o.4266 1 o.31102 1 o.3486

1 o.48757 I o.39201 1 o.45083

I o.39252 I o.38015 I o.41661

93

94

leave-one-event-out cross-validation across Tby varying batch input size for Tables

6.7 and 6.8, respectively.

From Table 6.7, for T = 2 and 30 min, the micro-Fl scores of ensembles 1-1 and

[-3 were very similar and better than that of the ensemble 1-2. This may be due to

the presence of LSTM layers in both ensembles I- I and 1-3. l n ensemble I-2, there

was no base learner with an LSTM layer. In these intervals, with respect to the

chosen batch input sizes, the ensemble I-1 achieved the best performance.

When T = 5 min, the ensemble 1-1 outperformed other ensembles for batch input

sizes 16 and 32. In this time interval, the ensemble 1-2 performed better than that

of other ensembles for batch size 64. This time interval is where the ensemble 1-3

achieved its least micro-Fl scores across all the batch input sizes and T, which is

the same when the batch input size is fixed under a micro-averaging scheme. For

T = 10 min, the ensemble 1-1 obtained the best micro-Fl scores for batch input sizes

32 and 64. The ensemble 1-3 achieved a better micro-Fl score over other ensembles

for batch input size 16. In this time interval, the ensembles I-1 and 1-2 obtained their

least micro-F 1 scores across all the batch input sizes and T.

When T = 60 min, the ensemble I-3 outperfonned other ensembles for batch

input sizes 32 and 64, and the ensemble 1-1 performed better for batch input size of

16. It was this time interval where all ensembles obtained their maximum micro-Fl

scores. The ensemble 1-3 achieved the overall best micro-FI score of 64.3% for batch

input size of 64. In this case, higher time interval helped the ensembles to surpass

their lower time interval micro-Fl scores for almost all of the combinations of batch

input size and T. Again, the results show that LSTM backed ensemble 1-3 outplayed

other ensembles given the advantages of LSTM such as its good gating mechanism

and ability to learn long-term dependencies.

From Table 6.8, for T= 2 min, the ensemble I-1 achieved better macro-Fl scores

95

than that of ensembles 1-2 and 1-3 across all the batch input sizes. In this time

interval, the ensemble 1-2 obtained its maximum macro-Fl score. When T = 5 min,

the ensemble 1- 1 outperformed other ensembles in terms of the macro-F 1 score. Lower

time intervals had longer time-series sequences that can better represent variations in

propagation patterns of rumors and non-rumors than for higher time interval values.

However, lower time intervals may have more data sparsity.

For T = 10 and 30 min, the ensemble 1-l achieved better performance than

that of other ensembles for batch input sizes 32 and 64. However, its performance

significantly dropped compared to lower time interval values, and the ensemble 1-3

obtained better performance for batch input size 16. The ensemble 1-2 became weak

when T = 30 min, and ensembles [-1 and 1-3 started to show some improvement in

their performances compared to T = 1 0 min.

In the time interval T = 60, the ensemble 1-1 better performed over other ensem­

bles for batch input sizes 16 and 32, and the ensemble [-3 obtained the best macro-Fl

score for batch input size 64. In this time interval, the ensembles 1-1 and 1-3 obtained

their overall maximum macro-Fl scores (i.e., 48.7% and 47.6% respectively) across

T. Overall, the ensembles supported extreme time intervals such as T = 2 min and

T = 60 min to achieve good performance.

In the case of the micro-Fl score, the ensembles 1-1, 1-2, and 1-3 obtained their

best micro-Fl scores for T = 60 min with respect to the chosen batch input sizes.

The only exception was where the micro-F I score of the ensemble 1-3 was lower than·

its micro-FI scores when T = 2, l O and 30 min when batch input size was set to 16.

This means that T = 60 min was appropriate for the effective detection of rumors. In

the case of the macro-Fl score, the best performances of the ensembles l-1 I-2 and , '

1-3 were varied for each batch input size across T , which means based on the need,

a suitable ensemble model can be selected along with its appropriate time interval

96

value. For instance, if early detection is required, a researcher can pick a lower time

interval value; and for effective prediction, the researcher can choose a higher time

interval value.

As discussed earlier, the same behavior for 10 min time interval value was seen,

which caused most of the ensemble implementations to perform weakly for both

micro and macro averaging schemes. In addition to that, the ensemble I-3 again

showed low performance in the 5 min time interval under both averaging schemes.

By observing the above results, varying the hyperparameters batch input size and

learning rate resulted in producing similar kinds of behavior of the ensembles. In

general, when micro-averaging was used, both hyperparameter variations supported

higher time interval value for better performance. In the case of macro-averaging

scheme was employed, time intervals 2 and 60 min helped ensembles 1-1 and 1-2 to

perform strong. However, the ensemble I-3 still achieved better performance when

T = 60 min case only as all ensembles were comfortable with the 60 min time

interval. It was best used to achieve better performance regardless of variations in

chosen batch input sizes and learning rates. For T = 60, the generated time-series

data will have lesser data sparsity than that of other values of T that makes the

feature space short for the conversation samples. This may be the reason that all

ensembles performed better at higher time intervals. Especially, the ensembles with

base learners designed using LSTM layers.

Another key observation was that, for all ensembles, 2 and 60 min time intervals

have shown good performance. However, there is no sweet spot for the ensembles

for other values of T . This observation was critical in applying the proposed model

depending upon the end goal. For instance, if early detection is needed, the researcher

can pick small time interval values such as T = 2 min by sacrificing a little amount

of prediction performance. If the effective prediction is important, the researcher can

97

easily set the time interval to a higher value, for example, T = 60 min.

6.5.3 Discussions. As the PHEME dataset exhibits non-rumor chauvinism

(i.e., the dataset contains non-rumor samples almost double the number of rumor

samples), adding more rumor samples to the dataset will help in improving its class

balance. It may help classification models to perform better classification. When

compared to [73], it was noticed that increase in maximum micro and macro averaged

Fl scores with the addition of two extra events (Gurlitt and Putin Missing events)

to the PHEME five event dataset. In the case of fixed batch input size, improvement

was 5.7% and 0.4% for micro and macro averaging schemes. When the learning rate

was constant, the improvement was 7 .9% for the micro averaging scheme. However,

the maximum macro F 1 score was dropped by 0.7%. Moreover, even though events

Gurlitt and Putin Missing were included in the seven events PHEME dataset, only

the Putin Missing event contributed to adding a greater number of rumor samples

slightly to the dataset than Gurlitt event, which was also a supporter of the non­

rumor group.

In addition to this, the data pre-processing method combined with the proposed

model helped in improving Kotteti's previous best score in [73] and achieved a 64.3%

micro FI score, which is almost an 8% improvement. The performance improvement

may seem small, but it is non-trivial to gain huge performances using this dataset.

For instance, in (74], extensive feature engineering was conducted for a rumor de­

tection problem on social media using the PHEME dataset with five events. The

authors focused on extracting complex features such as content-based and social fea­

tures, and their best Fl scores were 0.606 and 0.339 for content-based and social

features, respectively. When both feature sets are jointly used, the F 1 score reached

0.607, which was a 0.1 % improvement. Again, extensive feature engineering needs

98

a long time to be completed as some of the features may not be readily available.

Having complex feature sets challenge hardware resources, which also increases com­

putational complexity that directly impacts training times of classification models.

Nevertheless, given the condition that information spreads rapidly on social media,

time-taking labor-intensive feature engineering may not be appropriate.

6.6 Concluding Remarks for the Chapter

In this chapter, a data pre-processing method and an ensemble model were pro­

posed for the timely detection of rumors on social media. The proposed data pre­

processing method transformed Twitter conversations into time-series vectors based

on the tweet creation timestamps, which can be extracted and processed without

delay. Furthermore, the generated time-series data was of pure numeric type, which

reduced feature set complexity and, in turn, helped in reducing the computational

complexity of classification models during their training process. The proposed en­

semble model contained several classification models with simplistic yet effective

architectures designed using deep learning techniques. By combining the proposed

data pre-processing method with the ensemble model, better performance of rumor

detection was demonstrated in the experiments using the PHEME dataset. For in­

stance, the researcher improved the classification performance by 7 .9% in terms of

micro Fl score compared to the baselines.

99

CHAPTER 7

CO NCLUSIONS AND FU TURE WORK

7 .1 Conclusions

In this study, a data imputation preprocessing method was proposed for enhanc­

ing fake news detection using machine learning. The proposed method aimed to

mitigate the missing values problem in the raw data using data imputation methods.

The researcher utilized scikit-leam's lmputer with a " mean" strategy for missing nu­

merical values [26], and the Categoricallmputer1 method was applied to categorical

missing data. Experimental results showed that traditional machine learning models

combined with the proposed data preprocessing method outperformed baselines.

Given the condition that infonnation spreads rapidly in social media, verifying

news credibility becomes a challenging task. Fake news detection in social media is

a well-known problem; many of the existing works explored various features from

social media posts to improve fake news detection accuracy. Fake news in social

media disseminates very fast. This created a necessity for developing novel method­

s/techniques to detect fake news in its early stages of proliferation. In this study,

a multiple time-series data analysis model was also proposed. It relied only on the

temporal characteristics of social media (Twitter) data for the early detection of fake

news in social media.

With the proposed time-series model, the researcher simplified the feature extrac­

tion process, which significantly reduced the time required for ML models' training

and testing processes as well as reduced the computational complexity of ML mod­

els by taking advantage of pure numerical time-series data. The experimental re-

100

suits showed that the generated time-series data used with the GaussianNB classifier

achieved a high Precision score of 94%.

Furthermore, deep learning techniques combined with time-series data generated

by using only the temporal features of tweets showed better performance results than

traditional machine learning models. The ensemble-based deep learning rumor

detection model achieved top perf01mance, especially.

In summary, the main contributions of this study are:

_ A data imputation preprocessing method was proposed for mitigating missing

values in the raw data and used with traditional ML models improved fake

news detection accuracy and outperformed state-of-the-art methods [27].

_ A multiple time-series data analysis model for the early detection of fake news

in social media was proposed.

- The experimental results showed that using the generated time-series dat~

simplified the feature extraction process, reduced ML models' computational

complexity and their training and testing times, and achieved a high Precision

score of 94% with GaussianNB classifier.

- The researcher proposed a deep learning-based classification model that relied

entirely on tweets' propagation patterns for the detection of false information

in social media.

- Experimental results showed improvement in the micro-averaged Fl score by

4.6%, compared to baselines [28].

- The researcher proposed an ensemble-based deep learning classification model

for rumor detection on social media. With that, the classification performance

was improved by 7 .9% in terms of a micro F l score compared to the baselines.

101

7 .2 Future Work

This study addressed issues related to handling missing data to enhance fake news

detection and early detection of false information on social media. These results can

be enhanced by employing good quality dataset(s) than that of the datasets used in

this study. However, a dataset with good quality in terms of size and ground-truth

balance was not currently available. It would be beneficial to collect a high-quality

dataset for fake news detection in the future.

102

REFERENCES

[I] N. Kshetri and J. Voas, "The economics of "fake news"," IT Professional,

vol. 19, pp. 8- 12, November 2017.

[2] M. Granik and V. Mesyura, "Fake news detection using naive bayes classifier,"

in 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering

(UKRCON), pp. 900-903, May 2017.

[3] K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, "Fake news detection on social

media: A data mining perspective," CoRR, vol. abs/1708.01967, 2017.

[4] A. Zubiaga, M. Liakata, R. Procter, K. Bontcheva, and P. Tolmie, "Towards

detecting rumours in social media,'' in Workshops at the Twenty-Ninth AAA!

Conference on Artificial Intelligence, 2015.

[5] A. Zubiaga, M. Liakata, and R. Procter, "Leaming reporting dynam­

ics during breaking news for rumour detection m social media," CoRR,

vol. abs/1610.07363, 2016.

[6] V. Qazvinian, E. Rosengren, D. R. Radev, and Q. Mei. ·' Rumor has it: Identify­

ing misinformation in microblogs," in Proceedings of the Conference on Empir­

ical Methods in Natural Language Processing, EMNLP' 11. (Stroudsburg, PA,

USA), pp. 1589-1599, Association for Computational Linguistics, 2011.

[7] A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter, "Detection and

resolution of rumours in social media: A survey," Co RR, vol. abs/1704.00656,

2017.

[8] T. Lan. C. Li, and J. Li, "Mining semantic variation in time series for rumor

detection via recurrent neural networks," in HPCC/ SmartCity/ DSS, pp. 282-

103

289, IEEE, 2018.

[9] T. Hashimoto, T. Kuboyama, and Y. Shirota, "Rumor analysis framework in

social media," in TENCON 2011-2011 IEEE Region 1 0Conference, pp. 133-

137, IEEE, 2011.

[10) N. Ruchansky, S. Seo, and Y. Liu, "Csi: A hybrid deep model for fake news

detection,'' in Proceedings of the 2017 ACM on Conference on Infonnation and

Knowledge Management, pp. 797-806, ACM, 2017.

[11) N. Xu, G. Chen, and W. Mao. " Mnrd: A merged neural model for rwnor

detection in social media." in 2018 International Joint Conference on Neural

Networks (JJCNN), pp. 1-7, IEEE, 2018.

[12) Z. Zhao, P. Resnick, and Q. Mei, " Enquiring minds: Early detection of rumors

in social media from enquiry posts," in Proceedings of the 24th International

Conference on World Wide Web, WWW '15, (Republic and Canton of Geneva,

Switzerland), pp. 1395- 1405, International World Wide Web Conferences Steer­

ing Committee, 2015.

[13] C. Buntain and J. Golbeck, " Automatically identifying fake news in popu­

lar twitter threads," in 201 7 IEEE International Conference on Smart Cloud

(SmartCloud), pp. 208- 2 15, Nov 2017.

[14] L. Wu, F. Morstatter, X. Hu, and H. Liu, " Mining misinformation in social

media," Big Data in Complex and Social Networks, pp. 123-152, 2016.

[15] J. Ma, W. Gao, and K.-F. Wong, "Detect rumors in m icroblog posts using

propagation structure via kernel learning," in ACL, 2017.

[16] J. Ma, W. Gao, P. Mitra, S. Kwon, B. J. Jansen, K.-F. Wong, and M. Cha,

'·Detecting rumors from microblogs w ith recurrent neural networks.," in JJCAI,

104

pp. 3818-3824,2016.

[17] T. Hashimoto, T. Kuboyama, and Y. Shirota, "Rumor analysis framework in

social media;· in TEN CON 2011 - 2011 IEEE Region 10 Conference, pp. 133-

137, Nov 2011.

[18] Y. Chang, M. Yamada, A. Ortega, and Y. Liu, "Ups and downs in buzzes: Life

cycle modeling for temporal pattern d iscovery," in 2014 IEEE International

Conference on Data Mining, pp. 749-754, IEEE, 2014.

[19] Y. Chang, M. Yamada, A. Ortega, and Y. Liu, "Lifecycle modeling for buzz

temporal pattern discovery," ACM Transactions on Knowledge Discovery from

Data, vol. 11 , no. 2, 2016.

[20] S. Kwon, M. Cha, K. Jung, W. Chen, and Y. Wang, ··Prominent features of

rumor propagation in online social media," in 2013 IEEE 13th International

Conference on Data Mining, pp. 1103- 1108, Dec 2013.

[21) S. Kwon and M. Cha, "Initial small data reveal rumor traits v ia recurrent neural

networks," Journal of KIISE, vol. 44, no. 7, pp. 680 - 5, 20 l 7 /07 / .

[22] T. N. Nguyen, C. Li, and C. Niederee, " On early-stage debunking rumors on

twitter: Leveraging the wisdom of weak learners," vol. pt.Ii, (Cham, Switzer­

land), pp. 141 - 58, 2017//.

[23] J. Ma, W. Gao, Z. Wei, Y. Lu, and K.-F. Wong, '"Detect rumors using time series

of social context information on microblogging websites," vol. 19-23-Oct-2015,

(Melbourne, VIC, Australia), pp. 1751 - 1754, 2015.

[24) J. Poulos and R. Valle, "Missing Data Imputation for Supervised Learning,"

ArXiv e-prints, Oct. 2016.

105

[25] R. Procter, J. Crump, S. Karstedt, A. Voss, and M. Cantijoch, " Reading the

riots: what were the police doing on twitter?," Policing and Society, vol. 23,

no. 4 , pp. 413-436, 2013.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, 0. Grisel,

M. Blonde!, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas­

sos, D. Coumapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-leam:

Machine learning in Python," Journal of Machine Leaming Research, vol. 12,

pp. 2825-2830, 2011.

(27] W. Y. Wang, ""liar, liar pants on fire'·: A new benchmark dataset for fake news

detection," CoRR, vol. abs/1705.00648, 2017.

[28] C. M. M. Kotteti, X. Dong, and L. Qian, "Multiple time-series data analysis for

rumor detection on social media," in 2018 IEEE International Conference on

Big Data (Big Data), pp. 4413-4419, IEEE, 2018.

[29] Z. Zhao, P. Resnick, and Q. Mei, "Enquiring minds: Early detection of rumors

in social media from enquiry posts," in Proceedings of the 24th International

Conference on World Wide Web. WWW· 15. (Republic and Canton of Geneva,

Switzerland), pp. 1395-1405, International World Wide Web Conferences Steer­

ing Committee, 2015.

[30] J. Ma, W. Gao, Z. Wei, Y. Lu, and K.-F. Wong, " Detect rumors using time

series of social context information on microblogging websites," in Proceedings

of the 24th ACM International on Conference on Infonnation and Knowledge

Management, pp. 1751-1754, ACM, 2015.

(31] T. Chen, X. Li, H. Yin, and J . Zhang, "Call attention to rumors: Deep attention

based recurrent neural networks for early rumor detection," in Pacific-Asia Con­

ference on Knowledge Discovery and Data Mining, pp. 40-52, Springer, 2018.

106

[32] Y. Liu and S. Xu, ·'Detecting rumors through modeling information propagation

networks in a social media environment," IEEE Transactions on computational

social systems, vol. 3, no. 2, pp. 46-62, 2016.

[33] Y. Qin, W. Dominik, and C. Tang, " Predicting future rumours," Chinese Jour­

nal of Electronics, vol. 27, no. 3, pp. 514-520, 2018.

[34] z. Wang, Y. Guo, J. Wang, Z. Li, and M. Tang, " Rumor events detection from

chinese micro blogs via sentiments enhancement," IEEE Access, 2019.

[35] G. Liang, W. He, C. Xu, L. Chen, and J. Zeng. ·'Rumor identification m m1-

croblogging systems based on users' behavior," IEEE Transactions on Compu­

tational Social Systems, vol. 2 , no. 3, pp. 99-108, 2015.

[36) S. Kwon, M. Cha, K. Jung, W. Chen, and Y. Wang, '·Prominent features of

rumor propagation in online social media," in 2013 IEEE 13th International

Conference on Data Mining, pp. 1103-1 108, IEEE, 2013.

[37] K. Wu, S. Yang, and K. Q. Zhu, " False rumors detection on sina weibo by

propagation structures,·· in 2015 IEEE 31st international conference on data

engineering, pp. 651-662, IEEE, 2015.

[38] L. Wu and H . Liu, "Tracing fake-news footprints: Characterizing social media

messages by how they propagate," 2018.

[39] C. D. Manning, P. Raghavan, and H. Schlitze, Introduction to Information Re­

trieval. New York, NY, USA: Cambridge University Press, 2008.

[40) J. Kaiser, " Dealing with missing values in data;' vol. 5, pp. 42-51, 01 2014.

[41) C. J.C. Burges, ''A tutorial on support vector machines for pattern recognition."

Data Min. Knowl. Discov. , vol. 2, pp. 121- 167, June 1998.

107

[42] A. Zubiaga, G. Wong Sak Hoi, M. Liakata, and R. Procter, " Pheme dataset of

rumours and non-rumours," Oct 2016.

[43] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. ·'Leaming phrase representations using mn encoder­

decoder for statistical machine translation," arXiv preprint arXiv: 1406.1078,

20 14.

[44] S. Hochreiter and J. Schmidhuber, '·Long short-tenn memory;· Neural compu­

tation, vol. 9, no. 8, pp. 1735-1780, 1997.

[45] F. Chollet, Deep Leaming with Python. Greenwich, CT, USA: Manning Publi­

cations Co., l st ed., 2017.

[46] J. Chung, C. Gulcehre. K. Cho, and Y. Bengio, "Empirical evaluation

of gated recurrent neural networks on sequence modeling," arXiv preprint

arXiv: 1412.3555, 2014.

[47] M. Schuster and K. K. Paliwal, .. Bidirectional recurrent neural networks,'" IEEE

Transactions on Signal Processing, vol. 45, no. 11 , pp. 2673-2681, 1997.

[48] A. Graves, N. Jaitly, and A.-r. Mohamed, ·'Hybrid speech recognition w ith deep

bidirectional lstm, ,. in 2013 IEEE workshop on automatic speech recognition and

understanding, pp. 273-278, IEEE, 2013.

[49] F. Chollet et al., "Keras." https://keras.io, 2015.

[50) J. Zhao, N. Cao, Z. Wen, Y. Song, Y.-R. Lin, and C. Collins, ·""# fluxflow:

Visual analysis of anomalous information spreading on social media," IEEE

transactions on visualization and computer graphics, vol. 20, no. 12, pp. 1773-

1782, 2014.

[51) Z.-H. Zhou, "Ensemble learning;· Encyclopedia of biometrics, pp. 411-416, 2015.

108

[52] Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line

learning and an application to boosting," Journal of computer and systemsci­

ences, vol. 55, no. l , pp. 119-139, 1997.

[53] L. Breiman, " Bagging predictors,'' Machine learning, vol. 24, no. 2, pp. 123-140,

1996.

[54] D. H. Wolpert, "Stacked generalization," Neural networks, vol. 5, no. 2, pp. 241-

259, 1992.

[55] L. Breiman, " Random forests," Machine learning, vol. 45, no. 1, pp. 5-32, 2001.

[56] D. Gaikwad and R. C. Thool, " Intrusion detection system using bagging ensem­

ble method of machine learning,·· in 2015 International Conference on Comput­

ing Communication Control and Automation, pp. 291-295, IEEE, 2015.

[57] G. Tuysuzoglu, N. Moarref, and Y. Yaslan, "Ensemble based classifiers using

dictionary learning," in 2016 International Conference on Systems, Signals and

Image Processing (IWSSIP), pp. 1-4, IEEE, 2016.

[58] H. Li, J. Wang, T. Gao, Y. Lu, and Z. Su, "Accurate prediction of the optical

absorption energies by neural network ensemble approach," in 2010 Fifth Inter­

national Conference on Frontier of Computer Science and Technology, pp. 503-

507, IEEE, 2010.

(59] B. Linghu and B. Sun, '·Constructing effective svm ensembles for image class ifi­

cation," in 2010 Third International Symposium on Know ledge Acquisition and

Modeling, pp. 80-83, IEEE, 20 I 0.

[60] X.-D. Zeng, S. Chao, and F. Wong, "Optimization of bagging classifiers based

on sbcb algorithm," in 2010 International Conference on Machine Leaming and

Cybernetics, vol. 1, pp. 262-267, IEEE, 2010.

109

[61] Y. Chen, Y. Wang, Y. Gu, X. He, P. Ghamisi, and X. Jia, "Deep learning en­

semble for hyperspectral image classification," IEEE Journal of Selected Topics

in Applied Earth Observations and Remote Sensing, 2019.

[62] M. M. Islam, X. Yao, S. S. Nirjon, M. A. Islam, and K. Murase, "Bagging

and boosting negatively correlated neural networks," IEEE Transactions on

Systems, Man, and Cybernetics, PartB(Cybemetics), vol. 38, no.3,pp. 771-

784, 2008.

[63] L. Shi, L. Xi, X. Ma, and X. Hu, "Bagging of artificial neural networks for

bankruptcy prediction," in 2009 International Conference on Information and

Financial Engineering, pp. 154-156, IEEE, 2009.

(64] I. Fakhruzi, "An artificial neural network with bagging to address imbalance

datasets on clinical prediction,'' in 2018 International Conference on Informa­

tion and Communications Technology (ICOIACT), pp. 895-898, IEEE, 2018.

(65] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, "Learning phrase representations using rnn encoder­

decoder for statistical machine translation,'' arXiv preprint arXiv: 1406.1078,

2014.

[66) S. Hochreiter and J. Schmidhuber, '·Long short-term memory," Neural compu­

tation, vol. 9, no. 8, pp. 173 5-1780, 1997.

[67] J. Chung, C. Gulcehre, K. C ho, and Y. Bengio, "Empirical evaluation

of gated recurrent neural networks on sequence modeling," arXiv preprint

arXiv:1412.3555, 2014.

[68] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE

Transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997.

110

[69] A. Graves, N. Jaitly, and A.-r. Mohamed, " Hybrid speech recognition with deep

bidirectional lstm, ,. in 2013 IEEE worksrwp on automatic speech recognition and

understanding, pp. 273-278, IEEE, 2013.

[70] J. Heaton, Introduction to neural networks with Java. Heaton Research, Inc.,

2008.

[71] E. Kochkina, M. Liakata, and A. Zubiaga, "All-in-one: Multi-task learning for

rumour verification," arXiv preprint arXiv: 1806.03713, 2018.

[72] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thlrion, 0. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas­

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn:

Machine learning in Python;' Journal of Machine Leaming Research, vol. 12,

pp. 2825-2830, 201 1.

[73] C. M. M. Kotteti, X. Dong, and L. Qian, "Rumor detection on time-series of

tweets via deep learning," in MILCOM 2019-2019 IEEE Military Communica­

tions Conference (MILCOM), pp. 1-7, IEEE, 2019.

[74] A. Zubiaga, M. Liakata, and R. Procter, "Learning reporting dynamics dur­

ing breaking news for rumour detection in social media," arXiv preprint

arXiv:1610.07363, 2016.

EDUCATION

CURRICULUM VITAE

CHANDRA MOULI MADHA V KOTTETI

E-mail: chandra.mankatha@gmail.com

Ph.D. in Electrical Engineering, Prairie View A&M University, Prairie View,
Texas, USA, August 2020.

l 11

M.S. in Applied Computer Science, Northwest Missouri State University, Ma1yville,
Missouri, USA, December 2014.

B.Tech. in Electrical and Electronics Engineering, Koneru Lakshmaiah College
of Engineering, Guntur, Andhra Pradesh, India, April 2012.

WORK EXPERIENCE

Graduate Research Assistant, CREDIT Center, Prairie View A&M University,
Prairie View, Texas 77446, USA, October 2016 - May 2020.

Test Automation Developer, TEKSYSTEMS GLOBAL SERVICE, LLC, Ari­
zona, USA, April 2015 -January 2016.

Graduate Teaching Assistant, Northwest Missouri State University, Missouri,
USA, May 2014 - December 2014.

PUBLICATIONS

C. Kotteti, X. Dong and L. Qian, "Ensemble Deep Learning on Time-Series
Representation of Tweets for Rumor Detection in Social Media", to be submitted,
2020.

C. Kotteti, X. Dong and L. Qian, "Rumor Detection on Time-Series of Tweets
via Deep Leaming". MILCOM2019-2019 IEEE Military Communications Con­
ference (MILCOM), 2019.

C. Kotteti, X. Dong and L. Qian, "Multiple Time-Series Data Analysis for Rumor
Detection on Social Media", 2018 IEEE International Conference on Big Data
(Big Data), 2018.

C. Kotteti, X. Dong, N. Li and L. Qian, "Fake News Detection Enhancement
with Data Imputation", 2018 IEEE (DASC/ PiCom/ DataCom/ CyberSciTech),
2018.

	Fake News Detection in Social Media Using Machine Learning and Deep Learning
	Recommended Citation

