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ABSTRACT 

Fake News Detection in Social Media Using Machine Leaming and Deep Learning 

(August 2020) 

Chandra Mouli Madhav Kotteti, Master of Science in Applied Computer Science, 

Northwest Missouri State University; 

Bachelor of Technology in Electrical and Electronics Engineering, Koneru 

Lakshmaiah College of Engineering; 

Chair of Advisory Committee: Dr. Lijun Qian 

Fake news detection in social media is a process of detecting false information that is 

intentionally created to mislead readers. The spread of fake news may cause social, 

economic, and political turmoil if their proliferation is not prevented. However, fake 

news detection using machine learning faces many challenges. Datasets of fake news 

are usually unstructured and noisy. Fake news often mimics true news. In this study, 

a data preprocessing method is proposed for mitigating missing values in the datasets 

to enhance fake news detection accuracy. The experimental results show that Multi­

Layer Perceptron (MLP) classifier combined with the proposed data preprocessing 

method outperforms the state-of-the-art methods. 

Furthermore, to improve the early detection of rumors in social media, a time­

se1ies model is proposed for fake news detection in social media using Twitter data. 

With the proposed model, computational complexity has been reduced significantly 

in terms of machine learning models training and testing times while achieving sim­

ilar results as state-of-the-art in the literature. Besides, the proposed method has a 

simplified feature extraction process, because only the temporal features of the Twit-

111 



ter data are used. Moreover, deep leaming techniques are also applied to fake news 

detection. Experimental results demonstrate that deep learning methods outper­

formed traditional machine learning models. Specifically, the ensemble-based deep 

learning classification model achieved top performance. 
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1 

CHAPTERl 

INTRODUCTION 

1.1 Research Background 

In this digitalized world, the proliferation of information through social media 

has become quite easy. For example, anyone can instantly create and spread a piece 

of information with ease using a smartphone. The time people use to consume news 

through Television and newspapers has almost reached its culmination point because 

of social media' s power. lt is not hyperbole if it is said that social media has become 

the p1imary source for news consumers, but the biggest problem with the news on 

social media is the news veracity. Social media news is a mix of both genuine and 

false information. No worries exist if the news is genuine and correct; however, in the 

case of news being incorrect, it may cause social, economic, and political turmoil. In 

the case of time-critical events, the effects may be dreadful. 

Nowadays, people rely more on social media services than traditional media be­

cause of its advantages, such as social awareness, education, research, global con­

nectivity, real-time sharing of digital information, etc. Over the years, social media 

users have been increasing more in number. They play a prominent role in building 

social media networks to communicate with each other, establish new relationships, 

or share feelings. Even though social media services are helpful in many ways, it, too, 

has its disadvantages. Some of the critical social media problems are: cyberbullying, 

hacking, and information privacy and security. 

This dissertation follows the style of the IEEE journal Machine Leaming With Big 
Data: Challenges and Approaches. 
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Social media has become a fast and easy way to proliferate news across the world, 

and they make news readily available for news consumers. However, fake news on 

social media has been proliferated for personal or social benefits. According to [ 1 ] , 

false info1mation has two forms: misinformation (incorrect info1mation) or disinfor­

mation (information that is used to deceive its consumers). Fake news is typically 

a piece of false information in nature, where its primary purpose is to deceive or 

mislead readers. It has many similarities with spam messages since they share com­

mon features such as grammatical mistakes and false information, using a similarly 

limited set of words. They contain emotionally colored information that affects the 

reader' s opinion [2]. How to detect false information effectively and efficiently on 

social media is a challenging problem. 

1.2 Fake News Detection 

The definition of fake news, its impact, control, detection, etc, are discussed next. 

1.2.1 Definition. Fake news consists of intentionally and verifiably false in­

formation with a motive to mislead readers [3]. Detecting fake news is a layered 

process that involves the analysis of the news contents to determine the truthfulness 

of the news. The news could contain information in various fo1mats such as text, 

video, image, etc. Combinations of different types of data make the detection process 

difficult. 

1.2.2 Impacts of Fake News. The proliferation of fake news may have a 

huge impact on society. As the contents of fake news are deliberately false, fake 

news can be used for personal benefits, financial and political gai~ and to spoil the 

reputation of a company, or person. The severity of the impact caused by fake news 

depends highly on the news creation time and situation, who created the news and 

his/her social status, and the social media platform used. If fake news propagation 
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is not prevented in the early stages, society may face unfavorable consequences. 

1.2.3 Fake News and Rumors. Fake news is mainly intended to mislead 

readers, whereas a social media rumor is a piece of information that is not verified 

for its truthfulness at the time of posting. Zubiaga et al. [4] defined a rumor as a 

circulating story of questionable veracity, which is apparently credible but hard to 

verify and produces sufficient skepticism and/or anxiety. A rumor might be true, 

partially true, or false, but fake news is a deliberate lie that mimics actual news. 

A rumor is capable of spreading misinformation or disinformation (5, 6]. Fake news 

detection could be performed using similarities between fake news and rumor [7]. 

Many methods have been proposed for detecting rumors in social media [8, 9, 10, 11]. 

Typically the rumor detection problem is formulated as a classification problem, such 

as a binary one (rnmor or non-rwnor). 

1.2.4 Detection Methods. Fake news detection methods using a variety of 

features are discussed here. 

1.2.4.1 Content-based. Traditional fake news detection methods rely 

heavily on fake news content. In [12], they present early detection of rumors in social 

media based on identifying signature text phrases in social media posts, for example, 

" Is this true?, Really?"'. In [1 3], they propose an automatic mechanism for fake news 

classification using four important processes, i.e., extracting features for prediction 

accuracy, dataset alignment, per-set feature selection, and evaluating model transfer. 

1.2.4.2 Context-based. Only news content is not adequate to enhance 

the existing fake news detection algorithms. This reason opens the gates for the 

necessity of auxiliary information, such as a user's social engagements on social media 

for the better detection of fake news [3]. The network strncture of the news could 

also help identify fake news [14]. 
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1.2.4 .3 Propagation Patterns. Fake news detection could be addressed 

based on propagation patterns of fake news as well. Ma et al. [ 15] used the propa­

gation structure technique for the rumor detection problem. They used propagation 

trees to identify clues on how an original message is spread over time. Ma et al. 

[16] automatically detected deep data representations for the enhancement of rumor 

detection. Their experiments focused on using variations in the contextual infonna­

tion of relevant posts over time for rumor detection instead of manually extracted 

features. 

Temporal features play a crucial role in the fast-paced social media environment 

because information spreads more rapidly than traditional media. Many researchers 

have used temporal features of social media to design a model that can quickly 

verify news on social media. Hashimoto et al. [ 17] proposed a framework for rumor 

information detection on social media. It relies on graph structure visualization of 

social media messages and capturing graph topology changes over time to identify 

fast-spreading rumor candidates and to verify them with the reliable sources such as 

TV programs and newspapers to confirm their reliability. 

Chang et al.'s work [18, 19] focused on buzz modeling, which means detecting 

a burst of topics on social media that captures the variations (i.e., sudden spikes 

and heavy tails) in temporal patterns of buzz time-series sequences via Product Life 

Cycle (PLC) models and uses a graph model K-Mixture of Product Lifecycle (K­

MPLC) to detect lifecycle patterns of buzzes automatically. Buzz modeling could 

help prevent malicious rumor spreading. 

ln [20], Twitter data's temporal, structural, and linguistic properties were studied 

for the rumor identification problem. For temporal properties, a Periodic External 

Shocks (PES) model was proposed, and features introduced by this model played a 
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big role in classifying rumors. In [21], an RNN-based model was developed for early 

detection of rumor circulation, which uses time-series input along with information 

about rumongers, and psycholinguistic traits of rumor content. Nguyen et al. ' s work 

[22] focused on early rumor detection task by determining the credibility of each 

tweet using Convolutional Neural Networks and used it with a time-series based 

rumor classification model. 

1.2.4.4 Combination of Above Methods. Kwon et al. [20] em­

ployed temporal, structural, and linguistic characteristics of rumor propagation and 

proposed a new periodic time se1ies model to identify temporal features. They 

also identified key structural and linguistic features in the rumor propagation and 

achieved better performance results over the existing state of the arts on rumor clas­

sification. [n [6], they explored the importance of content-based features, network­

based features, and microblog-specific memes for the identification of rumors. Content­

based features are extracted from text data, whereas network-based features focus on 

the user's behavior. Moreover, features such as hangtags and URLs extracted from 

microblog-specific (Twitter-specific) memes could be helpful in the enhancement of 

rumor detection models. 

Ma et al. [23] used time-series data, in which content-based and user-based 

features are combined with temporal features for rumor detection problem. In [21], 

an RNN-based model was developed for early detection of rumor circulation, which 

uses time-series input along with information about rumongers and psycholinguistic 

traits of rumor content. Nguyen et al. [22] focused on early rumor detection task by 

determining the credibility of each tweet using Convolutional Neural Networks and 

used it with a time-series based rumor classification model. 
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1.3 Challenges and Proposed Solutions 

This section gives the challenges and contributions of this study. 

1.3.1 Problems Considered and Challenges. These are presented as fol­

lows: 

- Raw datasets collected usually consist of missing values. Datasets need to be 

pre-processed well before a model gets trained with them; otherwise, these 

missing values reduce the detection perfonnance significantly if left untreated. 

- Mitigating missing values in the data is a non-trivial task. It is not possible to 

check whether the data contains MCAR or MNAR [24]. 

- In general, datasets contain a variety of data types, for example, strings and 

numbers. Handling missing values of numeric type is different from categorical 

missing values because nwnbers can be more easily processed than text. 

- Moreover, when breaking news occurs on social media, a significant amountof 

information posted in the beginning stages of its propagation is unverified [25]. 

- It is difficult for social media users to distinguish news fake or real for rapidly 

spreading events where background information about an event is inadequate, 

and a minimal amount of time is available for verifying news truthfulness. 

- Instant fake news detection techniques are required to prevent the damages 

that may be caused by fake news spreading. 

- Detection of rumors in social media has a lot of importance among research 

communities because unverified infonnation may be easily disseminated over a 

large network. 
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_ If the spread of false information is not stopped early, it may cause turmoil in 

society. In the case of time-critical events, the effects may be dreadful. 

_ Most of the rumor detection models require a complex feature set, which may 

increase computational complexity and make training processes of detection 

models more difficult. 

- Given the fast-paced social media environment, fast detection methods are 

needed to prevent rumors on social media. 

1.3.2 Proposed Solutions and Contributions. These are presented next: 

- This study focuses on data pre-processing methods for handling missing values 

in data and generation of time-series data from social media infonnation for 

early detection of rumors in social media using machine learning and deep 

learning. 

- The researcher used scikit-learn's lmputer with a ·'mean" strategy for handling 

missing values in the numerical columns, which replaces the missing values with 

the mean along the axis (0 - for columns, 1 - for rows) [26). 

- Categoricallmputer is a new method available in skleam-pandas1 module for 

handling categorical missing values. 

- The researcher combined traditional machine learning models capable of han­

dling multi-class classification tasks with appropriate data pre-processing meth­

ods discussed in chapter 3. It is shown that the multi-layer perceptron model 

significantly outperforms the state-of-the-art (27]. 

1https://github.com/scikit-learn-contrib/sklearn-pandas 
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_ This study also presents a multiple time-series data analysis model that ana­

lyzes different time-series Twitter data for early detection of fake news in social 

media in Chapter 4. 

- Generated time-series data from raw datasets can behelpful to simplify the fea­

ture extraction process, to reduce the computational complexity of ML models, 

and to reduce the time required for ML models training and testing processes. 

- Results show that the time-series model used with the GaussianNB classifier 

achieved a high Precision score. 

- This study proposes a novel rumor detection method by only using the temporal 

features of the data for fast rumor detection in social media in Chapter 5. 

- As only temporal features are used to generate time-series data, there is no need 

for the extraction and selection of complex features. This helps in reducing the 

computational time dramatically, which is critical for timely rumor detection. 

- The researcher generated the time-series data in pure numeric type, which is 

very favorable to the classification models and can be readily inputted into a 

model. 

- By experimenting with advanced deep learning models, the researcher improved 

the micro-averaged Fl score by 4.6%, compared to the baselines [28). 

- This study includes a method proposed in Chapter 6, with that computational 

complexity can be significantly reduced as timestamps of tweets are used rather 

than their contents or user social engagements to perform feature extraction. 

Moreover, the extracted feature set is of numeric type, which is amicable to 

classification models. 
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_ The proposed ensemble model improves the classification models' performances. 

It uses the majority-voting scheme on multiple neural networks that are part 

of the ensemble model and takes advantage of their strengths. 

- Validation of the proposed method on the PHEME2 dataset and the perfor­

mance results demonstrate the effectiveness of the proposed scheme. 

1.4 Outline of the Study 

This study has seven chapters. The first chapter introduces the background 

knowledge on fake news detection in social media, and the second chapter provides a 

review ofrelated studies. Chapter 3 discusses the mitigation of missing values in data, 

especially the proposed data imputation method for enhancing fake news detection. 

Chapter 4 explores the temporal characteristics of fake news for improving the early 

detection of fake news in social media using traditional machine learning models. 

Chapters 5 and 6 focus on the rumor detection problem by exploring the temporal 

properties of rumors using deep learning. Chapter 5 discusses the implementation 

of deep learning techniques to the specified problem, and Chapter 6 highlights an 

ensemble-based deep learning approach to tackle the problem. Finally, Chapter 7 

contains concluding remarks and future work. 

2
https:/lfigshare .com/articles/PH EM E_ dataset_for _Rumour_ Detection and era city 

C lassification/6392078 - - -
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CHAPTER2 

LITERATURE REVIEW 

Fake news detection attracts a massive amount of attention because of its appli­

cation values. It employs ideas for detecting rumor [7] from texts for implementing 

fake news detection based on similarities between fake news and rumor. Machine 

learning, especially deep learning, is a key technique applied for fake newsdetection. 

Extracting and selecting useful features from data could enhance fake news detec­

tion using machine learning and deep learning. Moreover, the news' contents and 

the network structure of the news can be useful for identifying fake news [ l 4]. 

On the other hand, rumor detection on social media itself is a well-known research 

topic. Some of the studies in the literature addressing the rumor detection problem 

are discussed next. The scheme proposed by Ma et al. [23] combined content-based 

and user-based features with temporal features to detect rumors. Nguyen et al. [29] 

focused on the early rumor detection task by determining each tweet's credibility 

using Convolutional Neural Networks with a time-series-based rumor classification 

model. 

For automatic rumor identification in microblogging websites, Ma et al. (30] 

proposed a Dynamic Series-Time Structure (DSTS) to capture variations in social 

context features such as microblog contents, users, and propagation patterns over 

time. They discussed the strong capability of their proposed model in the early 

detection of rumors. Hierarchical Attention RNN (HARNN)[8] is proposed for rumor 

detection, which uses a Bi-GRU with attention mechanism to capture h igh-level 

representations of tumor contents and a GRU layer to capture semantic changes 
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over the life-cycle of events. The HARNN model can select info1mative posts and 

distinctive words as features and detect rumors at an early stage. 

Additionally, the rumor analysis framework [9] was proposed to clarify social me­

dia topics and visualize topic structures in time series variation as a first step and 

then sought help from a reliable external source to determine the topic's reliabil­

ity. Rumor [ 1 O] has three general characteristics: text of an article, articles'user 

responses, and its source users promoting it. All these characteristics were combined 

for more accurate and automated fake news predictions. A Merged Neural Rumor 

Detection (MNRD) [ 11] was proposed for rumor detection in social media, which 

separates original posts from retweets and focused on rumor events in three aspects: 

original post's content. diffusion process of retweets as well as user information. 

A deep attention-based model [3 1] was proposed for the early detection of ru­

mors, which captures long-range dependency in the contextual variation of posting 

series. In [32], authors explored user-specific features and content characteristics of 

social media messages. They proposed an information propagation model based on 

heterogeneous user representation to observe distinctions in the propagation patterns 

of rumors and credible messages using it to differentiate them. Their study identi­

fied that rumors are more likely to spread among certain user groups. To predict a 

document in a social media stream to be a future rumor and stop its spread, Qin et 

al. [33] used content-based features, novelty-based features, and pseudo feedback. 

In [34], a sentiment dictionary and a dynamic time series algorithm based Gated 

Recurrent Unit model was proposed that identifies fine-grained human emotional 

expressions of microblog events and the time distribution of social events to detect 

rumor events. By treating microblog users' behaviors as hidden clues to detect 

possible rumormongers or rumor posts, Liang et al. [35] proposed a user behavior­

based rumor identification scheme. It focused on applying traditional user behavior-
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based features and authors' proposed new features that are extracted from users' 

behaviors to rumor identification task and concluded that rumor detection based on 

mass behaviors is better than detection based on microblogs' inherent features. 

In [36], temporal, structural, and linguistic features of social media rumors were 

explored for the rumor classification task, and using those features helped in identi­

fying rumors more accurately. Wu et al. [37] proposed a graph-kernel-based hybrid 

SVM classifier that can capture high-order (message) propagation patterns and se­

mantic features, such as the topics of the original message for automatically detecting 

fa lse rumors on Sina Weibo. However, most of the existing methods rely on a variety 

of features, for example, news contents, social context information, and/or complex 

classification model architectures to enhance fake news or rumor detection in social 

media. Due to this, the identification of false information on social media may be 

delayed since social media's fast-paced environment allows a minimal amount of time 

to analyze a piece of infonnation before it propagates all over the network. 
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Raw datasets collected for fake news detection usually contain some noise such 

as missing values. In order to improve the performance of machine learning-based 

fake news detection, a novel data pre-processing method is proposed in this study to 

process the missing values. Specifically, the missing values problem was successfully 

handled by using data imputation for both categorical and numerical features. For 

categorical features, missing values were imputed with the most frequent value in the 

columns. For numerical featw-es, the mean value of the column was used to impute 

missing numerical values. In addition, TF-IDF vectorization was applied in feature 

extraction to filter out irrelevant features. Experimental results show that Multi­

Layer Perceptron (MLP) classifier with the proposed data pre-processing method 

outperforms baselines and improves prediction accuracy by more than 15%. 

In this study, the data were pre-processed by employing imputing strategies for 

the missing values in the dataset, where skleam-pandas1 categorical imputing and 

sklearn' s Imputer2 with mean imputing strategies were employed for categorical data 

and continuous data, respectively. Categorical and nwnerical features were han­

dled together using the sklearn-pandas 1 DataFrameMapper method. After the data 

pre-processing and feature extraction phases are completed, the researcher supplied 

the cleaned dataset into classifiers such as Support Vector Machines, Decision Tree, 

1https://github.com/scikit-learn-contrib/sklearn-pandas 
2http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing. 

lmputer.html 



Multi-layer Perceptron, and Gradient Boosting for experimental analysis and com­

parison. 

The contributions of this study include: 

14 

- The raw dataset has many missing values spread across multiple columns. The 

researcher successfully processed the missing categorical and continuous values 

using the categorical imputer and mean imputer. 

- The researcher combined traditional machine learning models capable of han­

dling multi-class classification tasks with appropriate data pre-processing meth­

ods and showed that the multi-layer perceptron model significantly outper­

formed the state-of-the-art methods [27]. 

The outline of this study is as follows: Section 3.1 introduces the LIAR dataset. 

The proposed method is discussed in Section 3 .2. Experimental results and analyses 

are shown in Section 3.3, followed by Section 5.5, which concludes the Chapter. 

3.1 LIAR Dataset 

LIAR dataset3 is a benchmark dataset for fake news detection collected from 

PolitiFact4. It includes both categorical and numerical features combined for a total 

of 14 columns. Columns containing categorical (text) data include statement identi­

fier, statement, subjects discussed by the speaker, and meta-data for each speaker, 

such as speaker's job title, state, party, and the location of the speech. The numer­

ical features contain the speaker's total credit history count, including the current 

statement, which are named as, barely true, false, half true, mostly true, and pants 

on fire counts [27]. The target labels consist ofsix classes, includingpants-:fire,Jalse, 

barely-true, half-true, mostly-true, and true. This dataset is human-labeled, and each 
3https://www.cs.ucsb.edu/-william/data/liar_dataset.zip 
4http://www.polit ifact.com / 
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statement is evaluated by a PolitiFact editor for its truthfulness. The overall dataset 

contains 12,836 records in which the training set has I 0,269 records and validation, 

and testing sets have 1,284 and 1,283 records, respectively. The training, validation, 

and test sets are supplied in separate files. Figure 3.1 shows some records of the 

LIAR dataset. 

3.2 Proposed Methodology 

3.2.1 Data Pre-processing. This section discusses how the researcher mit­

igated missing values in the LIAR dataset and performed the feature extraction. 

3.2 .1.1 M itigate M issing Values . LIAR dataset3 consists of a com­

bination of categorical and numerical features. This dataset has many randomly 

located missing values for both types of features. It is not possible to check that the 

observed data contains missing values of Missing Completely at Random (MCAR) 

or Missing Not at Random (MNAR) [24]. Therefore, missing data imputation would 

be a good solution to handle these missing values. Typical imputation methods such 

as "mean" or "mode'· rely on explicit model assumptions. In general, the mean is 

preferred for quantitative data, and mode is preferred for qualitative data [24]. 

1n this study, the researcher used scikit-learn 's lmputer with a "mean'· strategy 

for handling missing values in the numerical columns, which replaces the missing 

values with the mean along the axis (0 - for columns, I - for rows) [26]. Categor­

icallmputer is a new method available in the skleam-pandas module for handling 

categorical missing values. It is applied to data columns that are of type "string." It 

substitutes null values with the most frequent value in the column. Researchers who 

use the scikit-learn module cannot impute missing categorical values since scikit­

learn module imputing methods are limited to numerical data. Therefore, the Cat­

egoricallmputer method helps impute missing categorical values, whereas imputing 
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FIGURE 3.1 A snapshot of LIAR dataset 
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methods in the scikit-leam module could be applied to numerical data. 

3.2 .1.2 Feature Extraction. Wu et al. [38] stated that extracting 

useful features from the actual news content is a challenging task because fake news 

spreaders could make the content of the fake news look like real news. In this study, 

the researcher used term frequency and inverse document frequency (TF-IDF) to 

identify useful features from news content. The TF-lDF technique is used to produce 

a composite weight for each term in the document, which is called tf-idf weight [39]. 

Calculating tf-idf weight is important in information retrieval and text mining tasks 

as it determines the significance of a term or word in a document and a corpus 

tf - idfi,d = tfi,d X idfi (3.1) 

In equation 3. l, t means a term, and d refers to a document. The term frequency t[t,d 

means the measure of the frequency for a particular term t in a document, in other 

words, how many times term t appeared divided by the total number of terms in the 

document. Inverse document frequency idfi is the logarithm of the total number of 

documents in the corpus divided by the number of documents where term t appears. 

idfi measure helps in knowing the importance of term t. 

3.2.2 Model. Fake news detection was treated as a multi-class classifica­

tion problem. Traditional machine learning classifiers such as Support Vector Ma­

chines (SVM), Decision Trees, Multi-layer Perceptron, and Gradient Boosting were 

selected. For SVM models, the researcher used classical SVC, Linear SVC with 

"crammer .singer," ·'one-vs-rest" multi-class strategies, and Nu-SVC as classifiers. 

3 .2.2.1 Support Vector Machines. They have great importance m 

solving classification problems consisting of nonlinearly separable classes. In this 
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study, Support Vector Classification (SVC), Nu-Support Vector Classification (NuSVC), 

and Linear Support Vector Classification (LinearSVC) were used to handle multi-

class classification tasks. SVC and NuSVC implement the one-vs-one scheme for 

multi-class classification, where the classifiers are constructed based on the nwnber 

of classes presented in the dataset. NuSVC is similar to SVC, but NuSVC conh·ols 

the nwnber of support vectors and training errors using a parameter v. LinearSVC is 

also similar to SVC, but the kernel used for classification is '"linear." They can imple­

ment "one-vs-rest" and "crammer ..singer" multi-class strategies in which the former 

strategy is generally preferred as the latter strategy is more expensive to compute, 

and better performance is rarely achieved. 

3.2.2.2 Decision Tree. It is a supervised classification and regression 

mode] that relies on the decision rules derived from the data features. It could be 

applied to binary classification problems as well as multi-class problems. Jt is capable 

of handling both categorical and numerical data and requires little data preparation. 

On the other hand, sometimes, this model could create over-complex trees (i.e., 

overfitting). Data alteration may change the complexity of the decision tree. 

3.2.2.3 Multi-layer Perceptron. It is a supervised learning algorithm 

that learns a function f(· ): Rm - R> by training on a dataset, where mis the num-

ber of dimensions for input and o is the number of dimensions for output. It consists 

of one or more non-linear layers, called hidden layers between input and output lay­

ers. Input features are a set of neurons { Xilx1, xi, ... , Xm } . ln the hidden layer, 

each neuron transforms previous layers values by using a weighted linear summation 

w1x1 + wixi + . . . + WmXm and non-linear activation function g(· ): R - R . Values 

from the last hidden layer are transformed into output values by the output layer. 

It is useful for on-line learning and to learn non-linear models. 
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3.2.2.4 Gradient Boosting. Gradient Tree Boosting is one of the ensemble­

based methods. Gradient Boosting builds a forward stage-wise additive model. It 

could be used for both classification and regression problems. In this model, het­

erogeneous features are naturally handled, but scalability is an issue because of the 

sequential nature of boosting. 

3.3 Experiment 

The researcher employed LIAR dataset 3 to verify ML models. Four evaluation 

metrics, namely accuracy, precision, FI-score, and recall, are used to evaluate ML 

models' performance. One of the major challenges of performing classification on 

this dataset was to handle missing values. To mitigate this problem, the researcher 

applied three data pre-processing methods on the dataset and examined how effec­

tively each method could impact the classifiers' performances. Feature extraction 

was performed on the dataset for all three methods as discussed in Section 3.2.1.2, 

and the researcher utilized all features except statement id for the analysis. 

Additionally, the models' computational complexity was examined by monitoring 

the training and prediction time for different classifiers. They are presented in hours, 

minutes, seconds, and milliseconds (HH:MM:SS:ms) format. The three methods used 

are as follows: 

3.3.1 Delete Records Containing Missing Values. In this method, records 

consisting of missing values were deleted. This method removed more than 4,000 

records from the dataset. MLP classifier outperformed other classifiers in predicting 

validation and test sets. The performances are shown in Tables 3.1, 3.2, and 3.3. 

3.3.2 Replace Missing Values with Empty Text. The researcher used 

empty text to replace the missing values in the dataset. With this method, the 
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TABLE 3.1 The training time of different classifiers with the delete method 

Classifier Training Time 
(HH:MM:SS:ms) 

SVC 0:21 :33.292383 

LinearSVC_CS 0:03: 11.075396 

LinearSVC _OVR 0:00:09.173900 

NuSVC 0: 13:13.883099 

Decision Tree 0:00:06.170634 

MLPClassifier l :40:09. 743315 

GradientBoosting 0:21 :42.929440 

TABLE 3.2 Performance results on the validation set with the delete method 

Classifier Prediction Time Accuracy Fl Precision Recall 
(HH:MM:SS:ms) % 

SVC 0:0 l :56. 706200 0.283 0. 182 0.217 0.234 

LinearSVCL:S 0:00:00.634472 0.174 0.173 0.179 0.181 

LinearSVC..OVR 0:00:00.02 l 058 0.265 0.228 0.258 0.237 

NuSVC 0:01 :29.970123 0 .258 0.240 0.255 0.244 

Decision Tree 0:00:00.047126 0.326 0.324 0.328 0.322 

MLPClassifier 0:00:00.1 05282 0.416 0.370 0.515 0.370 

GradientBoosting 0:00:00.071388 0.400 0.377 0.441 0.368 
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TABLE 3.3 Performance results on the test set with the delete method 

Classifier Prediction Time Accuracy Fl Precision Recall 
(HB:MM:SS:ms) % 

SVC 0:01 :58.420455 0.286 0.174 0.179 0.230 

LinearSVC .CS 0:00:00.040109 0.173 0.166 0 .172 0.174 

LinearSVC.OVR 0:00:00.025069 0.225 0.210 0.224 0.217 

NuSVC 0:01 :26.568999 0.247 0.229 0.239 0.238 

Decision Tree 0:00:00.044117 0.339 0.343 0 .338 0.351 

MLPClassifier 0:00:00.079210 0.394 0.359 0.515 0.356 

GradientBoosting 0:00:00.086864 0.390 0.391 0.438 0.381 

researcher successfully prevented the data loss problem because no records were 

deleted. Again, the MLP classifier stood at the top in the list in terms of perfor­

mance. This time the prediction accuracies for validation and test sets were improved 

compared to the delete method. Tables 3.4, 3.5, and 3.6 show the respective perfor­

mance results for validation and test sets with the replace method. 

TABLE 3.4 The training time of different classifiers with the replace method 

Classifier Training Time 
(HH:MM:SS:ms) 

SVC 1:38:25.423104 

LinearSVC _CS 0:06:32.412224 

LinearSVC _OVR 0:00: 15.322742 

NuSVC I :05: 17.864797 

DecisionTree 0:00:24.834177 

MLPClassifier 0:42:30.996866 

GradientBoosting I: 12:06.434310 
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TABLE 3.5 Performance results on the validation set with the replace method 

Classifier Prediction Time Accuracy F l Precision Recall 
(HH:MM:SS:ms) % 

SVC 0:06:49.043784 0.243 0.198 0.291 0.230 

LinearSVC.CS 0:00:00.083121 0.191 0.183 0.183 0.183 

LinearSVC.OVR 0:00:00.066884 0.280 0.273 0.294 0.277 

NuSVC 0:06:25.410218 0.354 0.347 0.363 0.342 

Decision Tree 0:00:00.110789 0 .393 0.391 0.394 0.389 

MLPClassifier 0:00:00.474289 0.458 0.454 0 .553 0.443 

GradientBoosting 0:00:00.157420 0.446 0.441 0.486 0.432 

3.3.3 Impute Missing values Using Data Imputation Techniques. ln 

this method, the researcher evaluated the data pre-processing method as discussed 

in Section 3 .2.1.1, using different machine learning classifiers on validation and test 

datasets after these models were trained successfully. Tables 3.7, 3.8, and 3.9 show 

the performance results on the val idation set and test set, respectively. It is observed 

that the classifiers with data imputation outperformed those with the delete method 

in Section 3.3. l. Moreover, replace and data imputation methods achieved almost 

similar performance results. With the delete method, examples were obtained by 

eliminating records with any missing values, which reduces the actual dataset size 

and causes information loss. This method is suggested only for large datasets with a 

small percentage of missing values occurrence, and analysis of the complete examples 

should not make the dataset seriously biased [ 40]. On the other hand, with replace 

and data imputation methods, the problem of data loss was eliminated. For the 

replace method, the researcher considered missing values as blank values and treated 

them in the same way as other values. Data imputation methods are simple and 
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TABLE 3.6 Performance results on the test set with the replace method 

Classifier Prediction Time Accuracy Fl Precision Recall 
(HH:MM:SS:ms) % 

SVC 0:07:35.188419 0.248 0.188 0.254 0.224 

LinearSVC .CS 0:00:00.084752 0.184 0.174 0.176 0.175 

LinearSVC-OVR 0:00:00.061115 0.256 0.242 0.258 0.249 

NuSVC 0:06:59.119033 0.353 0.341 0.351 0.337 

Decision Tree 0:00:00.116335 0.370 0.381 0.379 0.384 

MLPClassifier 0:00:00.502584 0.434 0.434 0.533 0.434 

GradientBoosting 0:00:00.205547 0.426 0.432 0.465 0.426 

effective solutions when the missing values problem caused by missing at random 

(MAR) mechanism, which is the case here [ 40]. 

Compared to the state-of-the-art methods [27], the proposed method for data pre­

processing and MLP Classifier has significantly improved the accuracy of the 

validation set and test set by 21 % and 16%, respectively. Training iterations are 

limited to 200 with a fixed random state value, and the researcher employed stochas­

tic gradient descent to optimize the MLP classifier. Gradient Boosting, Decision 

Tree, and NuSVC classifiers also achieved satisfactory performances where Decision 

Tree Classifier consumed less time for training. It was also observed that classifiers, 

including SVC, LinearSVC with "crammer_singer" and "one-vs-rest" strategies per­

formed poorly and achieved fewer accuracy scores since the dimensionality of the 

feature is high. Additionally, the researcher measured the total time consumed for 

the prediction on both validation and test sets as well as some other metrics, such 

as FI -Score, Precision, and Recall. 

The researcher ran the MLP Classifier with the proposed methods for ten rounds 

to observe its performance without using random state value. The nwnber of it-
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TABLE 3.7 The training time of different classifiers with the data imputation 

method 

Classifier Training Time 
(HH:MM:SS:ms) 

SVC 1 :37:29.514189 

LinearSVC _CS 0:07:52.727027 

LinearSVC _QVR 0:00:20.665244 

NuSVC 1 :32:44.329309 

Decision Tree 0:00: 12.401620 

MLPClassifier 0:48: 19.175377 

GradientBoosting 1 :02: 10.105386 

TABLE 3.8 Performance results on the validation set with the data imputation 
method 

Classifier Prediction Time Accuracy Fl Precision Recall 
(HH:MM:SS:ms) % 

SVC 0:08: 10.334100 0.245 0.200 0.293 0.232 

LinearSVC .CS 0:00:00.086328 0.195 0. 190 0.189 0.191 

LinearSVC.OVR 0:00:00.150023 0 .267 0.264 0.274 0.272 

NuSVC 0:07:54.447672 0.367 0.359 0.394 0.349 

Decision Tree 0:00:00.075579 0.394 0.395 0.400 0.393 

MLPClassifier 0:00:00.491813 0.457 0.455 0.504 0.444 

GradientBoosting 0:00:00.107796 0.442 0.437 0.484 0.428 
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TABLE 3.9 Performance results on the test set with the data imputation method 

Classifier Prediction Time Accuracy Fl Precision Recall 
(HH:MM:SS:ms) % 

SVC 0:08: 15.804666 0.248 0.188 0.254 0.224 

LinearSVC .CS 0:00:00.088085 0.178 0.170 0.171 0.171 

LinearSVC-OVR 0:00:00.209324 0.239 0.231 0.238 0.244 

NuSVC 0:07:37.068152 0.360 0.342 0.366 0.338 

Decision Tree 0:00:00.078278 0.381 0.391 0.386 0.397 

MLPClassifier 0:00:00.462904 0.436 0.440 0.492 0.435 

GradientBoosting 0:00:00.104769 0.426 0.432 0.463 0.426 

erations is limited to 300 for the MLP classifier. Table 3 .10 lists the results for 

the training set. It shows that the MLP classifier combined with proposed data pre­

processing method is stable by maintaining training loss consistency. 

Figure 3.2 gives the training loss curves versus the number of iterations. Tables 

3.11 and 3.12 show the details of the MLP Classifier performance for ten rounds on 

validation and test sets. It is observed that the training loss curves for all the l 0 

rounds are consistent with the average final loss value of 1.279. 

3.4 Concluding Remarks for the Chapter 

ln this study, a data imputation pre-processing method was proposed for en­

hancing machine learning-based fake news detection. The proposed method focused 

on how to process the missing values in the raw data using data imputation tech­

niques. Experimental results showed that machine learning models combined with 

the proposed data pre-processing method outperformed baselines. 



26 

TABLE 3.10 Performance of the MLP classifier 

Round Training Time Training Loss No. of Iterations 
(HH:MM:SS:ms) 

0:39:48.745564 1.303 127 

2 0:49:54.880182 1.280 154 

3 0:47:42.052 l 16 1.286 148 

4 0:55:40.648856 l.270 171 

5 1 :04:42.60 l 990 1.265 177 

6 1: 16: 18.708549 1.254 197 

7 0:37:16.882210 1.322 11 6 

8 0:48:07.396703 1.265 175 

9 0:48:46.390700 1.266 177 

10 0:41 :38.946055 1.282 152 

TABLE 3.11 MLP classifier performance results on the validation set 

Prediction Time Accuracy Fl Precision Recall 
(HH:MM:SS:ms) % 

0:00:00.480897 0.465 0.454 0.574 0.446 

0:00:00.357233 0.470 0.462 0.577 0.454 

0:00:00.385952 0.453 0.446 0.571 0.438 

0:00:00.48 1820 0.451 0.445 0.570 0.437 

0:00:00.469991 0.469 0.458 0.577 0.452 

0:00:00.395029 0.467 0.458 0.557 0.449 

0:00:00.334350 0.450 0.449 0.486 0.439 

0:00:00.43409 1 0.461 0.453 0 .576 0.447 

0:00:00.34571 1 0.459 0.453 0.555 0.443 

0:00:00.355381 0.462 0.457 0.560 0.448 
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TABLE 3.12 MLP classifier perfonnance results on the test set 

Prediction Time Accuracy Fl Precision Recall 
(HH:MM:SS:ms) % 

0:00:00.453560 0.443 0.439 0.532 0.439 

0:00:00.437473 0.430 0.429 0 .533 0.428 

0:00:00.355367 0.449 0.444 0.551 0.445 

0:00:00.470456 0.443 0.441 0.548 0.441 

0:00:00.622739 0.449 0.443 0.550 0.443 

0:00:00.294496 0.445 0.441 0.538 0.443 

0:00:00.443745 0.448 0.455 0.483 0.447 

0:00:00.25115 1 0.436 0.433 0.540 0.433 

0:00:00.33 1610 0.444 0.440 0.539 0.441 

0:00:00.283757 0.443 0.438 0.539 0.441 



FIGURE 3.2 Training loss curves of the MLP classifier 
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CHAPTER4 

MOL TIPLE TIME-SERIES DATA ANALYSIS FOR FAKE NEWS 

DETECTION IN SOCIAL MEDIA 

29 

Fake news detection is a big problem in the fast-paced information spreading 

social media environment. The effects of fake news propagation are dreadful in 

case of time-critical events, such as natural disasters. In this study, a multiple time­

series data analysis model was proposed to detect fake news events on Twitter using 

only tweets' temporal properties. With the proposed model, the researcher 

significantly reduced Machine Learning (ML) models training, and testing processes 

time requirement, and their computational complexity, which helped quick detection 

of fake news events. The experimental results showed that the time-series model, 

combined with the GaussianNB classifier achieved a high Precision score of 94%. 

In this study, the researcher tried solving the fake news detection problem in 

social media using a time-series approach. The PHEME1 dataset of rumors and non­

rumors was used for the experimental analysis. This dataset is a collection of Twitter 

conversations categorized as rumors and non-rumors. The proposed model was 

designed to convert each of these conversations into a time-series vector using the 

timestamps of each tweet in a conversation. The time-series vector representation of a 

Twitter conversation consists ofreaction (tweets) counts corresponding to the source 

tweet for each time interval from the beginning to the end of the conversation. With 

this time-series approach, data preprocessing time was reduced. Using the generated 

time-series data with selected machine models, ML models training time and their 

1https://figshare.com/articles/PHEME dataset of rumours and non-rumours/ 
4010619 - - - - -
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computational complexity was reduced by taking advantage of the numeric data 

type. A 94% Precision score with Gaussian Naive Bayes (GaussianNB) Classifier 

was obtained. 

The outline of this study is as follows: In Section 6.3, a fake news detection 

problem in the time-series domain was presented. An introduction to the dataset 

and ML models used in the experimental analysis is provided. Section 4.2 contains 

the experimental results. Finally, Section 6.6 concludes the Chapter . 

4 .1 Methodology 

4.1.1 Problem Definition. Information spreads quickly on social media, es­

pecially news that can capture social media users' attention more likely to propagate 

faster than ordinary news. In the case of breaking news on social media, a significant 

amount of information posted in the beginning stages of its propagation is unverified 

[25]. It is difficult for social media users to distinguish news fake or real for rapidly 

spreading events, where background information about an event is inadequate, and 

a minimal amount of time is available for verifying news truthfulness. Instant fake 

news detection techniques are required to prevent the damages that may be caused 

by fake news. The researcher's approach to using time-series data for fake news 

detection is quick in flagging news as fake or true. The data is all numeric, and 

any information is discarded about the news except the news creation time, which 

reduces the time required for the ML model training process. 

4.1.2 Data Preparation and Analysis. This section introduces the PHEME 

dataset, and discusses how data pre-processing is performed on the dataset. At last, 

gives a brief analysis about the dataset. 
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4.1.2.1 PHEME Datase t. This dataset has a collection of Twitter 

rumors and non-rumors posted during five breaking news: Charlie Hebdo shooting, 

Ferguson unrest, Germanwings plane crash, Ottawa shooting, and Sydney siege. The 

actual dataset consists of a directory for each event, including subfolders for rumor 

and non-rumor conversation samples. A source-tweet and its correspondingreactions 

(a set of tweets) are provided for each conversation sample. The dataset was collected 

using the Twitter streaming API and annotated by a team of expert journalists [5]. 

The overall dataset consists of 5, 802 annotated tweets for all the five events in which 

I, 972 are rumors, and 3, 830 are non-rumors. 

4.1.2 .2 Data Pre-processing. The researcher used the scikit-leam 

machine learning library for experiments. The experimental setup was done in 

Python 3.5.5 using Spyder IDE 3.2.8, and NVIDIA GPU Server. Time-series data 

were prepared for experiments in five different time intervals: 2, 5, l 0, 30, and 60 

minutes for all five events present in the PHEME dataset. Preprocessed data con­

tains a nwnerical vector representation of Twitter conversations in which each row 

represents one whole conversation. Its columns having total reactions count for a 

given time interval limit. 

The PHEM E dataset consists of a set of events E = k ~ Each event Ei 

consists of rumor and non-rumor Twitter conversationl c} . For each event, the 

researcher prepared the time-series data for chosen time intervals by iterating through 

each event's directory and its corresponding rumor and non-rumor subfolders. The 

number of time intervals N (Qj) for a conversation Qj is given by, 

N ( CiJ) = max timeReactionsii - timeSourceu 
1 

(4. l) 

where timeSourceij is the timestamp of the source tweet, the timestamps of all the 
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reactions corresponding to that source tweet is timeReactionsu = fn, tn., · · · , tr/, 

and T is a tunable parameter for setting the desired time interval limit. In the 

experiments, the researcher set the values for T = 2, 5, 10, 30, 60minutes. 

For every conversation in both the subfolders, the following steps were executed 

to generate time-series data: 

_ Step l: Read the source tweet and get the originating timestamp. 

- Step 2: Read all the reactions corresponding to that source tweet and get their 

tweet creation timestamps. 

- Step 3: For each time inte1val tij,k = [ a, b ] , the count of the total number of 

timestamps of reactions in that interval is given by, 

countt/f.l, = card(Q) (4.2) 

where 1:ij,k is the k-th time interval of a conversation cu, k has values from 

1, 2, · · · , N , and Q c timeReactionsu, which is given by Q = {x I x > a 

I\ x ~ i, and x is the times tamp for a reaction. 

Therefore, the vector sequence of a conversation Cij belonging to an event Ei is, 

V ( q;) = [ countt(I. 1 countt1_1.2 countrlj.N] (4.3) 

and Ei has a feature vector as follows: 
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D 

0 V(Cio) O 

D V(Ci1)0 
E = o D (4.4) 

C C 
V ( Cin) 

The researcher structured the feature vector for an event by filling tailing null 

values with Os, and for the analysis, labeled non-rumors as Os and 1 s for rumor 

samples. 

4.1.2.3 Dataset Analysis. Table 4.1 shows the number of rumors and 

non-rumors present in the PHEME dataset for all the five events. Germanwings 

Crash and Ottawa Shooting events have slightly more than half of the tweets as 

rumors. Charlie Hebdo and Ferguson events have a high percentage of non-rumors. 

Sydney Siege event has 57 .2% of non-rumors. In total, this dataset has 66% of non­

rumor samples among 5,802 tweets. 

TABLE 4.1 PHEME dataset of rumors and non-rumors 

Event Rumors Non-rumors Total Count 

Charlie Hebdo 458 (22.0%) 1,621 (78.0%) 2,079 

Ferguson 284 (24.8%) 859 (75.2%) I, 143 

Germanwings Crash 238 (50.7%) 23 l (49.3%) 469 

Ottawa Shooting 470 (52.8%) 420 (47.2%) 890 

Sydney Siege 522 (42.8%) 699 (57.2%) 1,221 

Total Count 1,972 (34.0%) 3,830 (66.0%) 5,802 
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The idea is to explore any distinction patterns in the propagation of rumors and 

non-rumors using time-series data. I plotted Twitter interactions (i.e., number of 

rumor and non-rumor tweets) con-esponding to each event in the PHEME dataset for 

all the selected time intervals. Figures 4.1, 4.2, 4.3, 4.4, and 4.5 shows propagation 

patterns of rumors and non-rumors for different time intervals. From these time­

series plots, I observed that with bigger time intervals such as I 0, 30, 60 minutes, 

the difference in propagation patterns of rumors and non-rumors is easily identified 

for the events Charlie Hebdo, Ferguson, Ottawa Shooting, and Sydney Siege. The 

only exception is event Gerrnanwings Crash, where the propagation patterns are 

almost identical for all t ime intervals. For events, Charlie Hebdo, Ferguson, and 

Sydney Siege have longer non-rumor spikes. 

4.1.3 Machine Learning (ML) Models. The researcher have handpicked 

eight machine learning models for the experimental analysis: Birch, Decision Tree, 

Gaussian Na··1ve Bayes, KMeans, Logistic Regression, Multi-Layer Perceptron, Ran­

dom Forest, and Support Vector Machine. All of the models are implemented using 

scikit-leam Machine Leaming in Python package [26]. 

4.1.3.1 Birch. Birch is a memory-efficient clustering model that con­

structs a tree data structure called Characteristic Feature Tree (CFT) in which each 

node has several Characteristic Feature (CF) subclusters. These subclusters help 

in memory management while handling input data by maintaining necessary infor­

mation for clustering such as Linear Sum, Squared Sum, Centroids, Squared norm 

of centroids, and the number of samples in a subcluster. The branching factor de­

cides the maximum number of subclusters in a node, whereas the distance between 

the existing subclusters and the entering sample is controlled using the threshold 

parameter. 



FIGURE 4.1 Event Charlie Hebdo propagation patterns for different time inter­
vals 
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FIGURE 4.2 Event Ferguson propagation patterns for different time intervals 
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FIGURE 4.3 Event Germanwings Crash propagation patterns for different time 

intervals 
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FIGURE 4.4 Event Ottawa Shooting propagation patterns for different time in­
tervals 

0 

>.00 

I uo 

I eo 

-- 40 _; 
;;,o 

u 

.. oo 

I 1,00 

,Q .. -U><> 

I ,>Q 

0 

500 

I 400 

i 
... ou 

,.. 
2UO 

jj 
'.1.00 

0 

600 

.. oo 

I 400 

;; 300 

"IS 200 

:fJ 100 

0 

O'-t..•vv•anoo\.ln~"' 2 min '-~'-•• -~• 
no'"' rv,, ,o..-

.... ooo 

""'000 ~000 

•v•nl. 01.t.awn•h<>Ot..lna wU. h 10 m t n t. im• lr"'H.ef"'vet 

:1.000 ~000 ~000 
Tim- l'"'c:•.---• 

~000 >OOO 
Tim"" h "llr•,v•I 

.-,o,.,, ''"1..-.,, .. , 
-- ,ur,1oor 

~000 

... 000 

EV'•nt.. O•rmenw,ngacra•h vvlt:h GO m in t::lm• lnt:orve l 

2000 ,4000 6000 0000 
T l n"'la h 'U ,.e"-'•I 

non rumor 
f"Un"IOt 

1.0000 12000 

38 



FIGURE 4.5 Event Sydney Siege propagation patterns for different time inter­
vals 
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4.1.3.2 Decision Trees (DTs). DTs are used for classification and 

regression. This supervised learning method predicts the target label by learning 

simple decision rules derived from data features. Deeper trees have more complex 

decision rules. DTs require little data preparation, and trees can be visualized. They 

are suitable for both numerical and categorical data. Overfitting and creating biased 

trees are well-known issues with DTs. 

4.1.3.3 Gaussian Naive Bayes. Classification with the GaussianNB 

model is performed by implementing Gaussian Na"1veBayes algorithm and the likeli­

hood of the features is assumed to be Gaussian. GaussianNB classifier updates model 

parameters via a partial fit method, which is expected to be called many times to 

implement out-of-core or online learning. The partiaLfit method has numerical 

stability overhead. It is especially useful in handling a huge dataset that cannot fit 

into memory all at once because it operates on different chunks of the dataset. 

4.1.3.4 KMeans. KMeans clustering separates data samples into n 

groups of equal variance. The required number of clusters should be specified. Its 

operation is divided into three steps. In the first step, initial centroids are cho­

sen. Each sample is assigned to its nearest centroid in the second step. Finally, 

in the third step, new centroids are created by calculating the mean values of all 

the samples assigned to each previous centroid. Second and third are repeated until 

centroids' positions become almost stable. The KMeans algorithm tries to minimize 

the within-cluster sum-of-squares criterion. 

4.1.3.5 Logistic Regression (MaxEnt). It is a linear model used for 

classification and logit regression, or maximum-entropy classification are a few of its 

other names. The logistic function is used to determine the probabilities of the target 

label prediction. This model has a variety of solver techniques applicable to different 
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cases such as Ll penalty, Multinomial loss, and large datasets. 

4.1.3.6 Multi-layer Perceptron (MLP). MLP is a supervised learn­

ing algorithm that consists of one or more hidden layers between input and output 

layers. In the hidden layer, each neuron updates the previous layer's values with a 

weighted linear summation, followed by a non-linear activation function. It can learn 

non-linear models as well as real-time models. MLP validation accuracy is dependent 

on weight initializations; it is sensitive to feature scaling, and hyperparameter tuning 

is also required. 

4 .1.3.7 Random Forests. Random Forest Classifier is an ensemble­

based method used for classification, anomaly detection, and regression problems. 

ln random forests, bootstrap samples are drawn from the training set to build each 

tree in the ensemble. While constructing a tree, a node is split by picking the best 

split among a random subset of features. Due to this random selection of split, forest 

bias slightly increases, which is compensated by reducing variance by averaging. 

4.1 .3 .8 Sup p ort Vector Machines (SVMs). SVMs are supervised 

learning models applied to outlier detection, classification, and regression problems. 

SVMs decision function is dependent on support vectors, which are a subset of train­

ing data. C-Support Vector Classification (SVC) is based on libsvm implementation. 

SVC can be implemented with different kernel functions such as linear, polynomial, 

rbf, and sigmoid. Due to the complexity in fit time, it is difficult to scale large 

datasets. 

For each of these classification models, the researcher instantiated five different 

sub-models (i.e., five instances per model) with respect to all of the five time-interval 

time-series data, as shown in Figure 4.6. Each sub-model gets trained with its 

corresponding time-series data and gives its prediction result. Once all the sub-
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FIGURE 4.6 Multiple time-series data analysis model 
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model predictions are obtained, majority voting was performed to decide the final 

prediction result and used it for calculating the ML model' s evaluation metrics. In 

this work, a non-rumor is 0, and a rumor is 1. In the majority voting process, if 

the overall sum of all the sub-model predictions is less than three, then the final 

prediction is considered as non-rumor. Otherwise, it is a rumor. 

4.2 Experimental Results 

The experimental results are provided in this section. 

4.2.1 Datasets. The researcher prepared five different sets of data from the 

actual dataset using a 5-fold cross-validation technique, which means in each case one 

event is selected as the test set and the other four events data are used for training. 

This cross-validation technique helps in creating a real-time scenario by predicting 



an event that is completely unknown to the classifier. Table 4.2 shows the number 

of training and testing samples obtained using each event as a test set. 

TABLE 4.2 Training and testing sets obtained using 5-fold cross-validation 

Event as a test set No. of training samples No. of testing samples 

Charlie Hebda 3,723 2,079 

Ferguson 4,659 1,143 

Germanwings Crash 5,333 469 

Ottawa Shooting 4,912 890 

Sydney Siege 4,581 1,221 
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4.2.2 Evaluation Metrics. Since the fake news detection problem in this 

study is a binary classification task, the researcher used popular metrics such as 

Precision, F l, and Recall for evaluating the proposed model's performance. 

- True Positive (TP): when predicted as rwnors, which are annotated as rumors. 

- True Negative (TN): when predicted as non-rwnors, which are annotated as 

non-rumors. 

- False Negative (FN): when predicted as non-rumors, which are annotated as 

rumors. 

- False Positive (FP): when predicted as rumors, which are annotated as non­

rwnors. 

Precision _.-~l~T~P~1-­

I TP I+ I FP I 
(4.5) 
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Recall - I TP I 
ITPI + IFNI 

(4.6) 

1 
= 

2 
Precision x Recall 

F x Precision+ Recall 
(4.7) 

4.2.3 Results. Before considering the majority voting process to evaluate 

ML models, the researcher had conducted a sample test using GaussianNB and MLP 

classifiers without considering the majority voting of sub-models to see if any im­

provement in performance can be achieved by implementing majority votingprocess. 

Table 4.3 shows the sample results of classifiers GaussianNB and MLP operating on 

each test event with different time series data without applying the majority voting 

process. Maximum Precision, Recall, and Fl scores for: 

- GNB classifier is 0.629 for the Ottawa Shooting test event on 30min data, 0.555 

for the Charlie Hebdo test event on 2min data, and 0.428 for the Sydney Siege 

test event on 2min data, respectively. 

- MLP classifier is 0.595 for the Ottawa Shooting test event on 1 Omin data, 0.533 

for the Charlie Hebdo test event on 30min data, and 0.527 for the Charlie Hebdo 

test event on 30min data, respectively. 

In using the majority voting process, as discussed in Section 4.1.3, the results 

are significantly improved with the GaussianNB classifier. Table 4.4 shows the per­

formance of ML models in terms of Precision, Recall, and Fl. ln the 5-fold cross­

validation process, the GaussianNB classifier outperformed all other models in terms 

of Precision and F 1, irrespective of which event data served as the test set with con­

sistent and high Precision scores ranging between [87-97]%. A maximum Fl score of 

68.9% was achieved with the GaussianNB classifier on Ottawa Shooting event data. 

In contrast, a maximum Recall score of 100% was obtained with the MLP classifier 



45 

using event Germanwings Crash as the test set. 

On the contrary, MLP classifier performance was drastically decreased with ma­

jority voting process in terms of Precision and F l scores. Birch and K-Means models 

achieved good performance when events Gennanwings Crash, Ottawa Shooting, and 

Sydney Siege were used as test sets. Logistic Regression, Multi-layer Perceptron, 

and Support Vector Machine classifiers performed poorly in which the SVM classi­

fier achieved the poorest perfonnance. 

Finally, the researcher calculated micro-averaged Precision, Recall, and FI using 

equations 4.8, 4.9, and 6.15. 

Precision = t=1 I TAI 
micro ---'5,...._+-1 f"P'Pf't--+l--:i+~ 5--+I ""'FP~I 

i=l i i=l . 

5 ITAi 
5 IF'N l 
i=l I 

Recallmicro = . 
·c 

O 
PracisiJ~;j,l;J:x rhk:Qllmie,•a 

FI nu r = 2 X PrecisiOTl.micro + Recallmicro 

where i refers to each fold in the 5-fold cross-validation process. 

(4.8) 

(4.9) 

( 4.10) 

In Table4.5, the micro-averaged results are shown. GaussianNB Classifier achieved 

outstanding performance in Precision and Fl metrics. Birch and K-Means models 

obtained almost similar results, but Birch was a little better. Decision Trees, Logistic 

Re&1fession, Multi-layer perceptron, and Random Forest models achieved poor per­

formances with their Recall scores better than that of their Precision and Fl scores. 

Support Vector Machines model achieved the poorest performance. 

4.2.4 Discussions. The proposed time-series model performed well with some 

ML models and got poor performance results with a few ML models. In the case 

of the GaussianNB classifier, with its simplicity, fast computational capability, and 
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TABLE 4.3 Sample results for individual time intervals 

T est eve nt/ C l ass ifie r T im e interval Precision R ecall F l 

2 min 0.565 0.555 0.357 
5 min 0.575 0.553 0.332 

C h arlie H ebdo / GNB I Omin 0.570 0.544 0.313 
301ni n 0.566 0.534 0.289 
60min 0.565 0.530 0.279 

2 m in 0.543 0.524 0.5 19 
5 n "lin 0.543 0.5 18 0 .505 

C h a rl ie H c b do / 1VILP I Ornin 0.559 0.5 14 0.486 
30min 0.570 0.533 0.527 
60m in 0.389 0.498 0.437 

2 min 0.537 0.536 0.397 
5 min 0.534 0 .527 0.360 

Ferguson / GNB I O min 0.535 0.525 0.340 
30m i n 0.525 0.5 15 0.317 
601n in 0.528 0.5 18 0.32 1 

2 m in 0.498 0.500 0.453 
5 min 0.496 0.500 0.447 

Fer g u son / M LP 10 ,nin 0.5 14 0.502 0.450 
30min 0.59 1 0.503 0.439 
60n ,in 0.376 0 .499 0.429 

2 min 0.483 0.495 0.392 
Sn.in 0.4 26 0 .482 0.364 

German win gs Crash / GNB I 0 1nin 0.470 0.494 0.368 
30min 0.407 0 .488 0.349 
60rnin 0.446 0 .492 0.358 

2 min 0.54 7 0.502 0.342 
5 min 0.547 0.502 0.342 

German -win gs C r ash / M L P l Om in 0.246 0.500 0.330 
30min 0.246 0.500 0.330 
60min 0.246 0.500 0.330 

2 tnin 0.508 0 .502 0.407 
5 min 0.543 0.509 0.398 

O ttawa S h oot i n g/ GNB I Om in 0.566 0.509 0.384 
30m i n 0.629 0.506 0.365 
6 0 min 0.599 0.505 0.364 

2 1nin 0.469 0.498 0.333 
5 ,nin 0.486 0 .499 0.328 

O ttawa S h ooting/ M LP l Omin 0.595 0.506 0.342 
30m in 0.486 0.500 0.322 
60min 0.236 0.500 0.32 1 

2 min 0.58 1 0.536 0 .428 
5 min 0.596 0.530 0.398 

Syd ney S iege/ GNB I Omin 0.6 12 0.526 0.378 
30min 0.6 16 0 .5 16 0.34 9 
60min 0.606 0.5 12 0.339 

2 min 0.487 0 .497 0.404 
5 rnin 0.457 0.492 0.389 

Sydn ey Siege/ MLP l On,in 0.486 0.497 0.395 
3 0min 0.376 0.495 0.365 
6 01nin 0.286 0.497 0.363 
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TABLE 4.4 Shows the experimental results with each event as a test set 

Test event Model Precision Recall F1 

Birch 0.662 0.197 0.304 
DT 0.371 0.240 0.291 

GNB 0.952 0.237 0.380 
Charlie Hebdo KMeans 0.699 0.195 0.304 

LR 0.076 0.232 0.115 
MLP 0.046 0.304 0.080 
RF 0.332 0.303 0.317 

SVM 0.000 0.000 0.000 

Birch 0.782 0.231 0.357 
DT 0.215 0.260 0.235 

GNB 0.870 0.258 0.398 
Ferguson KMeans 0.641 0.218 0.325 

LR 0.035 0.213 0.060 
MLP 0.021 0.261 0.039 
RF 0.116 0.277 0.164 

SVM 0.000 0.000 0.000 

Birch 0.908 0.516 0.658 
DT 0.172 0.461 0.251 

GNB 0 .937 0.502 0.654 
Germanwings Crash K.Means 0.870 0.506 0.640 

LR 0.021 0.625 0.041 
MLP 0.013 1.000 0.025 
RF 0.118 0.452 0.187 

SVM 0.000 0.000 0.000 

Birch 0.747 0.523 0.615 
DT 0.170 0.533 0.258 

GNB 0.974 0.533 0.689 
Ottawa Shooting KMeans 0.743 0.521 0.612 

LR 0.006 0.375 0.013 
MLP 0.002 0.500 0.004 
RF 0.132 0.614 0.217 

SVM 0.000 0.000 0.000 

Birch 0.561 0.420 0.481 
DT 0.203 0.411 0.272 

GNB 0.971 0.440 0.605 
Sydney Siege K.Means 0.381 0.431 0.404 

LR 0.048 0.373 0.085 
MLP 0.033 0.333 0.059 
RF 0.119 0.521 0.193 

SVM 0.000 0.000 0.000 
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T ABLE 4.5 Micro-averaged results 

M odel Precision Recall F l 

BIRCH 0.702 0.323 0.443 

DT 0.232 0.318 0.268 

GNB 0.949 0.356 0.518 

KMEANS 0.637 0.313 0.419 

LR 0.040 0.278 0.069 

MLP 0.024 0.324 0.045 

RF 0.171 0 .374 0.235 

SVM 0.000 

ability to train well on a small dataset achieved the best performance with the pro­

posed time-series model. MLP classifier had limitations with its training process. 

There is no guarantee it reached global minima during the training process. Thus, 

it needs to be trained several times to find the training step with the best RMS 

error. This makes the training process a time-consuming task. Another important 

limitation of MLP was the hidden layer setting, which is set by the user. A very less 

value of the number of hidden layer neurons may cause MLP underfitting issues. If 

the value is too high, it may result in MLP overfitting. MLP classifier perfonnance 

with the majority voting process may be improved by tuning training and hidden 

layer parameters. SVM model achieved shocking results in the experimental analysis 

because it predicted each whole test event set as rumors even though it contained 

both rumors and non-rumors. According to Burges [41), kernel selection and dis­

crete data limit SVM performance. Since the time-series data was of pure integer 

data type and the researcher tried only 'rbf ' kernel; SVM may have achieved the 

poorest performance. Experimenting with different kernel options may improve its 
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performance. 

4.3 Concluding Remarks for the Chapter 

Verifying news credibility in social media is a challenging task as information 

spreads rapidly. Fake news detection in social media is a well-known problem; many 

of the existing studies used various features of social media posts to achieve better 

fake news detection accuracy. Given a minimal amount of time to detect fake news 

before they proliferate, there is an on-demand need for models to detect fake news 

propagation in its early stages. In this study, the researcher proposed a multiple time­

series data analysis model that relies only on tweets' temporal characteristics for 

detecting fake news on social media. With the proposed model, the researcher 

significantly reduced the time required for training and testing processes as well as 

reduced the computational complexity of ML models by taking advantage of numer­

ical data. The experimental results showed that with the time-series approach, a 

high Precision score of 94% was achieved with the GaussianNB classifier. 
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CHAPTERS 

RUMOR DETECTION ON TIME-SERIES OF TWEETS VIA DEEP 

LEARNING 

False information has become a weapon in cyberwarfare. How to detect false in­

formation effectively and efficiently on social media is a challenging problem. In this 

study, a novel method of rumor detec.tion on Twitter tweets is proposed as a proof­

of-concept for the fast detection of false information on social media. Specifically, the 

proposed method will use the tweets' propagation pattern to detect false informa­

tion rather than the contents. As a result, the proposed method was very effective 

in reducing the dimensionality of the input feature set, and it required much less 

computational time compared to content-based methods. Extensive experiments on 

the PHEME dataset, a collection of Twitter rumors and non-rumors posted during 

five breaking news, were performed to demonstrate the effectiveness of the proposed 

method. The researcher also observed that deep learning models such as recurrent 

neural networks outperfo1med classical machine learning models in terms ofmicro-F 

score. 

In this study, a novel rumor detection method was proposed by using the temporal 

features of the data. The PHEME dataset1 was employed, which is a collection of 

Twitter conversations with two classes: rumor and non-rumor, to demonstrate the 

effectiveness of the proposed method. The temporal feature was built based on 

the tweet timestamp, which transforms all Twitter conversation samples into simple 

vectors representing the number of tweets/retweets along time (in different time 

1https://figshare.com/articles/PHEME dataset of rumours and non-rumours/ 
4010619 - - - - -
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intervals). The main features of the proposed method include: 

_ Since only temporal features are used, there was no need for the extraction and 

selection of complex features. This reduced the computational time dramati­

cally, which is critical for timely rumor detection. 

_ The researcher generated the time-series data in pure numeric type, which was 

very favorable to the classification models and can be readily inputted into a 

model. 

Extensive experiments were performed with both classical classifiers and deep learn­

ing models. It was observed that deep learning models such as recurrent neural 

networks outperformed classical machine learning models by about 4% in terms of 

micro-F score. 

5.1 Rumor Detection Task 

Definition to the rumor detection problem is provided here, which is followed by 

an introduction to the PHEME dataset. 

5.1.1 Problem Definition. Classification tasks in machine learning or deep 

learning typically involve predicting class label(s) y for supplied input samples. The 

current problem is a b inary classification task, where the end goal is to predict 

whether a Twitter conversation sample is a rumor or not. Figure 5.1 shows the 

structure of Twitter conversation samples. Each Twitter conversation sample will 

have a source tweet and a set of reactions corresponding to that source tweet, in 

which the reactions would be retweets or comments. Equation y = f(X) defines 

the task, where y E {O, 1} in which O represents a non-rumor sample, and 1 represents 

a rumor sample,f is a classification model, and Xis a never before seen data sample, 

where the data sample is one Twitter conversation sample. 



FIGURE 5.1 The structure of a Twitter conversation sample 
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Reaction n 

5.1.2 Dataset. The PHEME [42] dataset is a collection of Twitter conver­

sation samples categorized into two classes (i.e., rumors and non-rumors), which 

are related to five news events, namely, Charlie Hebdo, Ferguson, Germanwings 

Crash, Ottawa Shooting, and Sydney Siege. For each of the five events, rumor and 

non-rumor contents consists of the source-tweet and the reactions (a set of tweets 

corresponding to that source-tweet). Overall, the dataset contains 5, 802 conversa­

tion samples, in which the number of rumor samples is I, 972, and the number of 

non-rumor samples is 3, 830. Figure 5.2 shows the data distribution of the PHEME 

dataset. The dataset had unbalanced nature both in terms of event-wise as well 

as class-distribution-wise. For event-wise, event Charlie Hebdo had got the lion's 

share of the dataset. Ferguson and Sydney Siege events had almost the same num­

ber of samples. Ottawa Shooting had a relatively decent number of samples, and 

the Germanwings Crash event was the smallest of all the five events with only 469 

samples. In the case of class-distribution-wise, only events Germanwings Crash and 

Ottawa Shooting showed some decent balanced class nature, and other remaining 



53 

FIGURE 5.2 Shows the data distribution of the PHEME dataset 

events exhibited unbalanced class nature, in which events Charlie Hebdo and Fergu­

son exhibited high class unbalance. The unbalanced nature has become the challenge 

to accomplish the classification task. 

5.2 Deep Learning Models 

To complete the classification task, the researcher employed different deep learn­

ing models. Three recurrent neural networks (RNN), namely Long Short-Term Mem­

ory (LSTM), Gated Recurrent Unit (GRU), and Bi-directional Recunent Neural 

Network (Bi-RNN), and one convolutional neural network (CNN) were used. Typ­

ically, an RNN consists of a hidden state h, and an optional output y for a given 

variable-length input sequence x = (x1, · · · , x:r ). At each time t, the hidden state 
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h(t) is given by [43]: 

h (t) = j{b (t-1), Xt), (5. I) 

where f is a non-linear activation function. 

5.2.1 LSTM. Hochreiter and Schmidhuber developed LSTM m 1997 [44]. 

The basis for the evolution of the LSTM network is finding a solution to the vanish­

ing gradient problem in feedforward networks and learning long-term dependencies 

present in the input samples. It is a special type of Recurrent Neural Network (RNN), 

which consists of an information-carrying path across many time-steps to save in­

formation for later use, thus preventing older signals from gradually vanishing. The 

major components of an LSTM unit are cell, input gate, output gate, and forget 

gate. The function of the cell component is to remember values over arbitrary time 

intervals, and the function of the three gates is to regulate the flow of information 

into or out of the cell [ 45]. Each j - th LSTM unit has a memory cj at time t, and 

the output hi Js given by [ 46]: 

W = oitanh(d), 
t t t 

(5.2) 

where cj is an output gate. 

5.2.2 GRU. This model was developed by Chung et al. in 2014 (46]. Its 

architecture is very similar to LSTM, but it is somewhat streamlined, making it 

cheaper to run. However, it may not have the same representational power as that 

of LSTM. It has a smaller number of parameters than LSTM due to the absence of 

an output gate. It uses the update and reset gates to control the flow of information, 

and the former is used in deciding how much of past information should be passed 

along to the future. The latter is used to determine how much of past information 
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should be discarded [45]. The activation hit is the linear interpolation between hi t-1 

and f?, which are previous activation and candidate activation respectively at time 

t [46]: 

hi= (1 - 7J)hi + zjfi, 
t t t-1 l t 

(5.3) 

where 2/ is an update gate. 

5.2.3 Bi-RNN. A traditional RNN is order dependent and processes the time­

steps in order. Altering the time-steps in an input sequence can affect the 

representations extracted by RNNs. The Bi-RNN [47] exploits the order sensitivity 

present in RNN and processes the input sequence, both chronologically and an­

tichronologically. In this way, the patterns which are overlooked by traditional RNN 

can be identified. It has twice the number of parameters of a traditional RNN, 

which makes it overfit quickly, but it can be controlled using some good regulariza­

tion techniques. It is very popular in natural language processing applications [45]. 

RNN variants GRU and LSTM layers were used in the experiments. The forward 
and backward hidden sequences (i.e., ~and +-A for Bi-RNNs are given by: 

where the W terms denote weight matrices, the b terms denote bias vectors, and H 

is the hidden layer function [ 48]. 

(5.4) 

(5.5) 

5.2.4 CNN. As one special CNN, 1 D convnets are good alternatives to RNNs 

for simple tasks, for instance, text classification and time-series forecasting. In oper­

ation, they basically extract local 1 D patches from sequences, which is similar to 2D 

convolution layers. Since the same input transfonnation is applied to every patch, 
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once a pattern is learned at a position in a sequence, it can be identified later in a 

different position. 1 D pooling of sequence data is also similar to 2D pooling, which 

is used to reduce the length of 1D inputs. 1D pooling involves identifying the 1D 

patches from the input and then outputting the values based on the chosen pooling 

type, for example, maximum or average [45]. 

5.3 Experiment 

The workflow is divided into two components: generation of time-series data for 

each time interval (T ), and training deep learning models to complete the classifica­

tion task. 

5.3.1 Time-series Data Generation. The PHEME dataset contains five 

events of rumor and non-rumor Twitter conversation samples. The researcher trans­

formed each of those conversations into time-series vectors for each time interval 

T . Once transformed, each row in the time-series data structure represents one 

whole conversation, and each of its columns is the total reaction counts with re-

spect to the chosen time interval step size. If E = {ei} is a set containing all 

the five events, then for each event data Cij E ei represents individual conversation 

samples. The PHEME dataset provides both rumor and non-rumor conversations 

separately for all events. The researcher iterated over all those events. For every 

conversation sample present in them, its source-tweet timestamp timeSource and its 

timeReactions = {tn, tri., · · · , trn}, which is a collection of timestamps of all the 

reactions corresponding to that source-tweet were extracted. The maximum length 

N ( c) of the vector representation for every conversation sample can be determined 

by, 

N(c) = max(timeReactions)- timeSource 

T 
(5.6) 
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For a conversation sample c, if (a, b] is the time interval limit for the k-th interval, 

where k = I, 2, . • • , N ( c) then the total count of reactions falling into that time 

interval is given by, 

countk = card( Q) (5.7) 

where Q c timeReactions and Q = { x I x > a I\ x ::; i , and x is the timestamp 

of a reaction (tweet) and cardinality measures the size of set Q, and the transformed 

vector representation is as follows: 

V (c)= [countk countk+l · · · countN] (5.8) 

Then the final featw-e vector representation of conversation samples for each event 

is given by 

D 

D V(ci)O 

D V(ci)o 
e, = □ □ (5.9) 

O C 
V(en) 

Since vector representations have variable lengths, the researcher padded all of them 

with Os at their tail end. For the experimental analysis, non-rumors and rumor 

samples were labeled with Os and l s, respectively. Algorithm l shows the pseudocode 

for generating the time-series data. 

5.3.2 Training Deep Learning Models. Once the researcher completed 

generating the time-series datasets, some basic data pre-processing using scikit-leam 

Machine Leaming in Python library [26] were performed. In the experimental anal­

ysis, 5-fold cross-validation was performed, which means for every fold, one event is 



Algorithm 1: Time-series data generation 
Input: P 
/* P is a data element containing file paths to all 

sub-directories of all events E *I 
Output: stores generated time-series data into' .csv ' files 
initialize an empty dictionary var 
forall sub.dir E P do/* sub..dir is a sub directory path present in 

p ~ 

forall t E T do 
L < 

/* t = 2,5, 10,30,60 
) forall c E sub. dir do 
L < 

I* c is a conversation sample present in sub_dir 
) var( c] - empty list 
a - timeSource 
/* lower time interval limit 
b ,__ timeSource + t 
/* upper time interval limit 
while True do 

if b ~ max ( timeReactions) then 

I 
append countk to var( c] 
break 

else 

l append countk to var( c] 
a.,_ b 

b ..... b +t 

save var into a ' .csv 'file and clear it 

*I 

*I 

*I 

*I 
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used as a test set, and other remaining events constitute a training set. The train 

and test sets proportions for all values of T are shown in Table 5.1. 

TABLE 5.1 5-fold cross-validation train and test sets proportions for all values of 
T 

59 

Selected Test £.vent Charlie Hebdo Ferguson Cerma nwings Crash Ottawa Shooting Sydney Siege 

Train Set 3,723 4,659 5,333 4,912 4,581 

Test Set 2,079 1,143 469 890 1,221 

The cross-validation technique helped in mimicking the real-application scenario 

because the event to be predicted was completely unknown to the classification 

model. A subset (10%) of the training set was utilized for validation in the training 

procedure. The researcher trained deep learning models by iterating over T. Since 

the dataset had unbalanced class nature, class weights using sklearn's class_weight 

library with a 'balanced'scheme were computed. Equation 5.10 [26] is used to cal­

culate the class weights. 

. n.samples 
class weights= . 

(n..classes x bzncount(y)) 
(5. l 0) 

where y is the 01;ginal class labels per sample, n .samples is the number of data 

samples. n_classes is the number of unique class label values present in the dataset, 

and bincount(y) counts the number of occurrences of each value in y of non-negative 

integers. The researcher used the calculated class weights for weighting loss func­

tions during the training process. Another challenge in the training process is data 

ambiguity. Some samples exist in the generated time-se1ies data with the same time­

series vector representation but different class labels. All of them were discarded to 
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achieve unbiased deep learning models' training. The researcher saved the shapes of 

the generated train and test sets for each time interval and selected test event after 

removing the duplicate samples and plotted the data distributions in Figure 5.3. It 

is observed from Figw-e 5.3 that with the increase of time interval, the number of 

duplicate samples increased, which caused a significant loss of data samples. Before 

feeding the time-series data into deep learning models, the researcher had scaled 

the data using sklearn's MinMaxScaler to normalize the data. Table 5.2 shows the 

hyperparameter settings used for the NN models' training. All the NN models 

FIGURE 5.3 Shows the time-series datasets distribution after removal of dupli­
cates 
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are designed using Keras: The Python Deep Leaming Library {49}. They have only 

one special layer (i.e., ConvlD, LSTM, BiLSTM, GRU, BiGRU) as their first hidden 

layer, followed by Dropout, Flatten and output Dense layers. The dense output layer 
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TABLE 5.2 NN models' hyperparameter settings 

Model Hidden layer units Dropout Optimizer Loss function 

ConvlD 64 I Adam (0.0001) I Categorical 

0.3 
Cross-entropy 

LSTM 32 I 
BiLSTM 48 I 

GRU 32 Adam (0.001) I Mean-Square Enor 

BiGRU 48 V • .J 

I 

was activated using a sigmoid activation function. The Conv JD model ' s kernel size 

is set to 3, and it is activated using a tanh function. The MaxPooling l D layer was 

used with a pool size of 2 only for the Conv l D model to downsample the data before 

applying Dropout and other layers. All the models had a batch input size of 64, and 

their number of training epochs set to 100. The class labels were converted into a 

binary class matrix. 

5.4 Results and Discussions 

The three key parameters in the analysis were time interval, test event, and the 

neural network model. 

5.4.1 Effect of Time Intervals. Figure 5.4 shows the mean values of vali­

dation accuracy scores of neural network models across T. As shown in Figure 5.4, 

the performance of neural network models fluctuated up and down as the T value 

was increased. The main observation was that when T is small, models Conv 1 D, 

LSTM, and BiGRU performed well, which means they have made good use of the 

subtle variations present in the long propagation patterns. However, when T gets 

bigger, their performances decreased, and there was a significant performance drop 

between T = 2 and T = 60 minutes. In contrast, models BiLSTM and GRU models 
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achieved good performances when Tis large. That means they are powerful enough 

to overlook and identify the differences in the short propagation patterns, which is 

a good sign for improving NN models· training time as the dimensionality of the 

feature set gets reduced. Interestingly, their performances were improved by a de­

cent margin between T = 2 and T = 60 m inutes. Nonetheless, for T = I 0, the 

performances of all the models were close to each other, which is not the case for 

other time intervals. 

FIGURE 5.4 5-fold mean validation accuracy scores of neural network models 
across T 
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5.4.2 Effect of Neural Network Models. From Figure 5.4, even though 

T changes, the majority of the neural network models showed reasonable individual 

time interval performance consistency. Again, for higher values of T, the models were 
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restricted to limited variations present in the propagation patterns of conversation 

samples, causing them to lose their power to perform better classification. Overall, 

neural networks that are designed using GRU and BiGRU layers achieved better 

performance than other models for most of T's values due to their parameter size, 

which was comparatively smaller than LSTM and BiLSTM layers. They have agood 

gating mechanism, too, to control the flow of information. Moreover, as there was 

a difference in performances among models for higher and lower values of T, using 

some ensemble techniques on the individual models, in which each model gets its 

best suitable time-series data may improve classification performance. 

5.4.3 Effect of Test Events. It is known that the PHEME dataset is highly 

unbalanced, as event Charlie Hebdo was dominant over all other events present in 

the dataset. 1n Table 5.3, the validation results are shown for T = 2 min since it 

was the time interval in which the best mean validation accuracy score was obtained, 

which was 57.9% for the BiGRU model. These results were the validation accuracy 

and loss values at the point where each deep learning model's training process was 

completed (i.e., the last training epoch). The performance results of neural networks 

were better when Ferguson is the test event. This is especially so in terms of training 

loss because it offered a good rumor to the non-rumor sample ratio in the training set, 

which was l, 688: 2, 971. However, when Charlie Hebdo is the test event, it offered 

even better rumor to the non-rumor sample ratio, i.e., I, 514 : 2, 209. On the flip 

side, compared to Ferguson being considered as a test event, the number of training 

samples was more than that of Charlie Hebdo. If Ferguson is the test event, then 

the total number of training samples is 4,659, and 3,723 total samples count in the 

case of Charlie Hebdo as the test event. It means significant data loss has occurred 

impacting NN models' training processes. Compared to events Charl ie Hebdo and 
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Ferguson, other remaining events constituted to poor rumor to non-rumor sample 

ratio. 

TABLES.3 NN models' validation results for T = 2 min (values are given in 
[O - 1)) 

CoovlO LSTM BiLSTM GRU BiGRU 
lime t.vent 

Ace Loss Ace Loss Ace Loss Ace Loss Ace Loss 

Charlie Hebdo 0.46186 0.81045 0.51271 0.32996 0.5 1271 0.33063 0.64407 0.35593 0.44492 0.55932 

Ferguson 0.57947 0.66224 0.54636 0.26432 0.5 1987 0.28071 0.29139 0.70861 0.56291 0.27162 
--

2min Germanwings Crash 0.5616 0.72854 0.54728 0.28441 0.48997 0.30552 0.51289 0.29355 0.69914 0.49854 

Ottawa Sbooling 0.46894 0.78378 0.47205 0.31332 0.46584 0.31 12 0.50311 0.29545 0.47826 0.31342 

Sydney Siege 0.45578 0.91026 0.71769 0.5 0.28231 0.71769 0.47619 0.33028 0.71088 0.5034 

Mean 0.5055 0.7791 0.5592 0.3384 0.4541 0.3892 0.4855 0.3968 0.5792 0.4293 

5.4.4 Other Observations. As the rumor detection problem is a typical 

binary classification task, the researcher considered the evaluation mettic called Fl 

score, which is the weighted average of precision and recall scores for evaluating the 

classification models' performances. Calculations were done for the macro and micro 

averaged testing results for all combinations of T and events E. Tables 5.4 and 5.5 

include the mean of 5-fold cross-validation micro and macro averaged testing results 

of neural network models with respect to T . The previous work results [28] are 

shown in Table 5.6, which were obtained using classification models: Decision Trees, 

Gaussian Naive Bayes, Logistic Regression, Multi-layer Perceptron, and Random 

Forests only by considering the micro averaging scheme. ln this study, the researcher 

was also interested in how the macro averaging scheme would impact the classification 

models' performances. The researcher did not create separate instances for each 

classification model as in previous work [28] to operate on each time interval time­

series data rather for all the neural network models used one static instance to work 
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on all combinations of T and E time-series data. In Tables 5.4 and 5.5, the micro­

averaged results were better than that of the macro-averaged results for all values 

of T. Micro-averaged testing results were high for lower values of T. In contrast, 

macro-averaged testing results were better in case of higher T values. For both the 

averaging schemes, the results did not vary too much for all of the models with 

respect to T , except in the case of the BiGRU model, where there was an almost 

LO% performance difference. Model LSTM stood out as the top performer in the case 

of a macro-averaging scheme by achieving a 49 .4% accuracy score for T = 30; and 

when the micro-averaging scheme was used model BiGRU obtained a high accuracy 

score. It was clear from the results shown in Table 5.6 that the researcher improved 

the micro-Fl score by 4% roughly compared to a previous study. 

In [5], content-based and social features were explored in the Twitter data con­

tained in PHEME dataset, where content-based included feature extraction methods: 

Word Vectors, Pait-of-speech Tags, Capital Ratio, Word Count, Use of Question 

Mark, Exclamation Mark, and Period; social features include: Tweet Count, Listed 

Count, Follow Ratio, users'age, and account verification status. Conditional Random 

Fields (CRF) classifier was the best model in their analysis, and its Fl scores were 

0.606 and 0.339 for content-based and social features, respectively. When both these 

heavyweight feature sets were used together. the CRF model 's Fl score was0.607. It 

is a little improvement compared to the Fl score obtained with only content-based 

features even after employing extensive feature engineering (i.e., social features ex­

traction) that describes how difficult it was to obtain slight performance gain using 

this dataset. 

On the other side, an increase in the complexity of the featw-e set may cause 

extra cost in terms of data pre-processing requirements, computational capabilities, 

and training time. The key observation was that as the T value increases, most 
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of the models' performance showed gradual decay in the case of a micro-averaging 

scheme. A big difference exists in models' performances for T = 2 and T = 60. 

This observation shows that as the sequence length of the propagation patterns of 

Twitter conversations decreases, the subtle variations in the propagation patterns 

were not explored by the classification models to properly classify the input samples. 

ln the case of a macro-averaging scheme, the perfonnances of the classification models 

improved for medium time interval lengths, i.e., T = 10 and 30 than that of lesser 

values of T . 

TABLE 5.4 Micro-averaged testing results in FI scores 

Time interval Conv ID I LSTM BiLSTM I GRU BiGRU 

2min 0.498 I o.522 0.49 I o.512 0.506 

5min 0.496 I 0.474 0.478 I 0.478 0.564 

!Omin 0.478 I 0.49 0.512 I 0.496 0.472 

30min 0.454 I 0.514 0.496 I 0.498 0.502 

60min 0.416 I 0.45 0.456 l 0.472 0.456 

TABLE 5.5 Macro-averaged testing results in F I scores 

Time interval Conv lD LSTM I BiLSTM GRU I BiGRU 

2min 0.478 0.46 I 0.44 0.418 I 0.4 1 

5min 0.488 0.464 I 0.458 0.468 I 0.41 

I0min 0.458 o.478 I 0.486 0.476 I 0.458 

30min 0.436 o.494 I 0.462 0.478 1 0 .47 

60min 0.388 o.434 I 0.442 o.456 1 0.444 
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TABLE 5.6 Comparing current study with baselines 

Previous study (baselines) I Current study 

Model DT GNB LR MLP RF BiGRU 

Fl 0.268 0.518 0.069 0.045 0.235 1 0.564 

5.5 Concluding Remarks for the Chapter 

For fast rumor detection in social meclia, a multiple time-series data analysis 

approach was proposed. Compared to the literature's content-based methods, the 

proposed method used only the temporal features of tweets. Because information 

propagates fast on social media, the timely detection of false information using the 

proposed method could deter the proliferation of false information before any un­

wanted disturbances occur in society. This approach is simple but very effective in 

reducing the dimensionality of the input feature set, which helped improve train­

ing time and reduced the computational complexity of classification models because 

of the nature of the generated time-series data. By experimenting with advanced 

deep learning models, the researcher improved the micro-averaged Fl score by 4.6%, 

compared to the baselines [28]. 
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CHAPTE R6 

ENSEMBL E DEEP LEARNING ON TIME-SERIES 

REPRESENTATION OF TWEETS FOR R U MOR DETECTION IN 

SOCIAL M E DIA 

Social media is a popular platform for information sharing. Any piece of informa­

tion can be spread rapidly across the gJobe at lightning speed. The biggest challenge 

for social media platforms like Twitter is how to trust news shared on them when 

there is no systematic news verification process, which is the case for traditional me­

dia. False information, for example, detection of rumors, is a non-trivial task, given 

the fast-paced social media environment. In this study, the researcher proposed an 

ensemble model that performs a majority-voting scheme on a collection of neural 

networks' predictions using time-series vector representation of Twitter data for the 

fast detection of rwnors. Experimental results showed that neural network models 

outperformed classical machine learning models in terms of a micro Fl score. 

In this chapter, Twitter data's temporal features were explored for the timely 

detection of rumors in sociaJ media. Tweet creation timestamp can readily be ex­

tracted from tweets, and there is no time delay to collect timestamp features. No 

sophisticated data pre-processing is required to convert them into useful features to 

train a classification model. Based on this observation, an ensem ble-based multiple 

time-series analysis model was proposed using deep learning models for the timely 

detection of rumors in social media. Specifically, time-series data were generated 

by transforming Twitter conversations, where each conversation contains a list of 

tweets, into times-series vectors that contain reaction counts as features, and fed as 
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input to deep learning models. The contributions of the proposed method are: 

_ With the proposed method, computational complexity can be significantly re­

duced, as timestamps of tweets are needed rather than their contents or user 

social engagements to perform feature extraction. Moreover, the extracted 

feature set is of numeric type, which is amicable to classification models. 

_ The proposed ensemble model improves classification models' perfonnances. It 

uses the majority-voting scheme on multiple neural networks that are part of 

the ensemble model and takes advantage of their strengths. 

- The proposed method was validated on the PHEME1 dataset, and the perfor­

mance results demonstrate the effectiveness of the proposed scheme. 

6.1 Problem Formulation 

This section defines the rumor detection problem, provides an overview of tweets' 

general features, and discusses breifly about the feature extraction method for parsing 

Twitter data. 

6.1.1 Rumor Detection. Rumor detection involved identifying whether a 

data sample is a rumor or not. In machine learning, this kind of problem is termed as 

a classification task, in which the classification model gets trained with an adequate 

number of training samples and tries to classify a never before seen testing sample 

as rumor or not. Therefore, the problem is given by g = f(X), where f is the 

classification model, and Xis a completely new data sample (a Twitter conversation 

sample that is transformed into a time-series vector) to it. The g is the prediction 

of the classification model, and it has only two values since the PHEME dataset has 

1https://figshare.com/articles/PHEME_dataset_ for_ Rumour_Detection_and_eracity_ 
Classification/6392078 
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two classes. In this study, the researcher used O's and l 's to represent non-rumor and 

rumor samples, respectively, i.e., g E {O, 1 }. 

6.1.2 General Features of Tweets. Typically, a classification task using 

machine learning or deep learning requires the extraction of useful features from the 

dataset. A variety of features can be extracted from Twitter data; for example, four 

types of features were extracted from Twitter data to study the spread of anomalous 

information in social media [50]. They are user profile features (users' friends and 

fo llowers count), user network features (users' EgoNet features), temporal features 

(retweet count), and content features ( e.g., whether a tweet has question mark). 

However, based on the theories of rumor propagation, authors in [36] considered 

temporal features as one of the key properties for studying the spread of rumors since, 

according to social psychologists, rumormongers have short attention. In this study, 

for the fast detection of rumors on social media, the researcher solely focused on 

the temporal features of Twitter data, which are the creation timestamps of tweets. 

These timestamps can be readi ly fetched. This study strictly rel ied on them for the 

generation of time-series data, which involved simple calculations, i.e., counting of 

the number of tweets for given time interval limits. 

6.1.3 Feature Extraction. In general, for Twitter data, the researcher used 

a parser to read and extract the required information from it depending upon its data 

type. In this study, the Twitter data utilized was available in JSON format. The 

researcher used a suitable parser to read that information and extract the required 

features, which are the creation timestamps of tweets. 

6.2 Ensemble Learning 

An overview to the ensemble learning and the proposed model are discussed next. 
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6.2.1 Overview of Ensemble Learning. Ensemble learning is a concept 

in which many weak or base learners try to solve a single problem. An ensemble 

contains many base learners, and its generalization ability is more powerful than 

that of the base learners [51 ]. Ensemble methods work on a set of hypotheses derived 

from training data rather than relying on one hypothesis. Constructing ensembles 

is a two-step process. First, the required number of base learners are produced. 

Secondly, all the base learners are grouped, and typically majority voting is applied 

for classification problems, and weighted averaging combination schemes are used for 

regression problems. Popular ensemble methods are boosting [52], bagging [53], and 

stacking [ 54]. 

The Boosting method focuses on fitting multiple weak learners sequentially. Each 

model in a sequence emphasizes the data samples that were badly treated by its 

previous model. AdaBoost [52] algorithm is a good example of boosting, which 

is simple and can be applied to data that is numeric, textual, etc. In the bagging 

method, multiple bootstrap samples are generated from the training data, and a weak 

independent learner is fitted for each of these samples. Finally, all the predictions 

of weak learners are aggregated to determine the most-voted class. Randomf orests 

[55] algorithm is a good example of the bagging method, one of the most accurate 

learning algorithms and runs efficiently on large databases. In the stacking method, 

using different learning algorithms, multiple first-level individual learners are created. 

These learners are grouped by a second-level learner (meta-learner) to output a 

prediction [54]. 

6.2.2 Bagging Learning. Bagging learning has been studied extensively in 

the literature. Bagging, also known as bootstrap aggregation, is a popular ensemble 

method that is useful in reducing the high variance o f machine learning algorithms. In 
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the bagging technique, several datasets are derived from the original training data set 

by employing sampling with replacement strategy. That means some observations in 

the derived datasets may be repeated. These datasets are used to train classification 

or regression models, and outputs are typically weighted average for regression cases, 

or majority voted for classification problems. 

The majority voting grouping technique is used in [56, 57]. In [56], the ensemble's 

bagging method is used with REPTree as a base classifier for an intrusion detection 

system and compared to other traditional machine learning techniques. It was shown 

that the ensemble bagging method achieved high classification accuracy by employ­

ing the NSLKDD dataset. Authors in [57], proposed to use dictionary learning with 

random subspace and bagging methods and introduced Random Subspace Dictio­

nary Learning (RDL) and Bagging Dictionary Leaming (BDL) algorithms. Their 

experimental analysis concluded that ensemble-based dictionary learning methods 

performed better than that of single dictionary learning. 

The weighted averaging grouping technique is employed in [58, 59]. In [58], the 

Neural Network Ensemble (NNE) approach was proposed to improve the general­

ization ability of neural networks and to reduce the calculation errors of Density 

Functional Theory (DFT). It is shown that both simple averaging and weighted av­

eraging grouping techniques helped in improving DFT calculation results. Authors 

in [59] proposed a method for improving image classification performance using SVM 

ensembles. Optimal weights for the base classifiers in the SVM ensemble are esti­

mated by solving a quadratic programming problem. These weights are then used 

to combine the base classifiers to form an SVM ensemble. 

The optimization of a generic bagging algorithm was studied in [60]. The authors 

added an optimization process into the bagging algorithm that focuses on selecting 

better classifiers, which are relatively efficient, and proposed Selecting Base Classi-
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tiers on Bagging (SBCB) algorithm. Experimental results proved that their SBCB 

algmithm performed better than the generic bagging approach. 

6.2.3 Deep Bagging Learning. Because deep neural networks are nonlin­

ear methods and have high variance, ensemble learning can combine the predictions 

of multiple neural network models to achieve less variance among the predictions and 

decrease the generalization error. An ensemble method is applied to neural networks 

mainly by (1) varying training data (data samples used to train models in the en­

semble are varied), (2) varying choice of the models in the ensemble, and (3) varying 

the combination techniques that determine how outputs of ensemble members are 

combined. 

In [61], the authors proposed a method that used the Convolutional Neural Net­

work (CNN) and the deep residual network (ResNET) ensemble-based classification 

methods for Hyperspectral Image (HSI) classification. Their proposed method used 

deep learning techniques, random feature selection, and majority voting strategy. 

Moreover, a transferring deep learning ensemble was proposed to make use of the 

learned weights of CNNs. In [62], two cooperative algorithms, namely NegBagg (bag­

ging is used) and NegBoost (boosting is used), were proposed for designing a neural 

network (NN) ensembles. These algorithms used a negative con-elation algorithm 

while training NNs in the ensemble. Applying these models to well-known problems 

in machine learning showed that with a lesser number of training epochs, compact 

NN ensembles with good generalization were produced. 

In [63], a bagging ensemble was proposed to improve the prediction performance 

of artificial neural networks (ANN) to tackle the bankruptcy prediction problem. 

Experimental results showed that the proposed method improved the performance of 

ANNs. Bagging technique using an ANN is proposed to address imbalance datasets 
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on clinical prediction in [64], and expe1imental results showed that this method 

improved the prediction performance. 

6.2.4 Overview of the Proposed Model. The proposed model has two 

key components: a data pre-processing method and an ensemble model. First, raw 

Twitter conversations were processed to transform them into the required data for­

mat, and then the transformed data was supplied to the ensemble model to perform 

the classification task. The ensemble model consisted of six different neural networks 

(base learners) tr ained using the generated time-series data. Their predictions were 

grouped so that the majority voting scheme was applied to determine the outcome 

as rumor or non-rumor. 

6.3 Methodology 

FIGURE 6.1 Shows the proposed model for rumor classification taking Twitter 
conversations as input, which are cleaned in the data pre-processing block and fed 
as input to the ensemble model that performs the majority voting to determine the 
final prediction 
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The structure of the proposed model is shown in Figure 6. 1. The model takes 

Twitter conversations as input, where each conversation is a stream of tweets that 

contains source-tweet and its corresponding reactions. In the data pre-processing 

stage, every tweet is parsed and its creation timestamp value is extracted. Once all 

tweets were parsed, time-series data for different time intervals were generated and 

conducted data cleaning. Then, the cleaned data were fed as input to the ensem­

ble model. The ensemble model has n base learners, which are n different neural 

networks represented as m1, m2, · · · , mn, where each of them yields its prediction 

results (i.e., ri, 1'2, · · · , rn). Finally, the majority-voting process was performed on 

all the predictions of those base learners, i.e., summing up all the prediction results 

and deciding the final prediction result as O (non-rumor) if the total sum was less 

than Ln/2J + I or as 1 (rumor) otherwise. 

6.3.1 Neural Networks Models Considered. The ensemble model con­

stitutes base learners designed using Recurrent Neural Network (RNN), Long Short­

Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bi-directional Recurrent 

Neural Network (Bi-RNN). Six base learners were designed in this work: BiGRU, 

BiLSTM, GRU, LSTM, LG (a combination of LSTM and GRU layers), and RNN. 

6 .3.1.1 RNN. An RNN is a type of neural network that processes se­

quences by iterating through the sequence elements [ 45]. Typically, it consists of a 

hidden state h, and an optional output y for a given variable-length input sequence 

x = (x1, · · · , X7' ). At each time t, the hidden state h (t) is given by [65]: 

h (t) = flh{t-1), Xt), (6. 1) 

where f is a non-linear activation function. The researcher used Keras' SimpleRNN 

[ 49] layer in the experiments. 
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6.3.1.2 LSTM. It is a special type of RNN and was developed by 

Hochreiter and Schmidhuber in 1997 [66]. It consists of four major components: 

cell, forget gate, input, and output gates. Component cell functions to memorize 

values over arbitrary time intervals and three gates regulate the flow of information 

into or out of the cell [ 45]. Each jth LSTM unit has a memory c/ at time t, and the 

output Htis given by [67]: 

hj = d tanh( d), 
t t t 

(6.2) 

where cl is an output gate. 

6.3.1.3 GRU. Chung et al. in 2014 [67] developed Gated Recurrent 

Unit, which has an architecture similar to ~STM. There is no output gate in GRU, 

which means it has a lesser number of parameters than LSTM. To control the flow of 

information, it uses the update and reset gates. These gates decide how much of past 

information should be passed along to the future or discarded [ 45]. The activation 

hi is the linear interpolation between hi and h!, which are previous activation and 
t ~1 t 

candidate activation respectively at time t [ 67]: 

(6.3) 

where 2/ is an update gate. 

6.3.1.4 Bi-RNN. A traditional RNN processes the t ime-steps in or­

der, whereas Bi-RNN [68] exploits the order sensitivity present in RNN. The input 

sequence can be processed in forward and reverse directions. It may have overfitting 

issues as it has twice the number of parameters of a traditional RNN. However, over­

.fitting problems can be controlled by employing good regularization techniques (45]. 

The researcher employed RNN variants GRU and LSTM layers in the experiments. 
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The forward and backward hidden sequences (i.e., _, and ,_) for Bi-RNNs are given 
h h 

by: 
_, -t 

ht= H(Wxli'Xt + W,;,; ht-1 +b-;;) 

where the W terms denote weight matrices, the b terms denote bias vectors, and H 

is the hidden layer function [69]. 

(6.4) 

(6.5) 

Once the base learners (m1, m2, · · · , mn) complete their training procedmes, the 

ensemble model combines all of their predictions and performs majority voting pro­

cedure on them to determine the ensemble model ' s evaluation metrics. First, the 

researcher created the proposed ensemble model that consisted of six base learners. 

Then, the researcher experimented on the proposed model by tuning its hyperpa­

rameters such as its batch input size and learning rate. New ensemble models were 

created using RNN, LSTM, and GRU layers to obtain a comprehensive set of results 

to efficiently analyze and determine the effectiveness of each ensemble model in de­

tecting rumor Twitter conversations. Variants of the ensemble model will also have 

six base learners. 

6.3.2 Implementation-I. In implementation-I, each of five base learners 

(BiGRU_l , BiLSTM..1 , GRU_l, LSTM.-1 , and simple RNN_l) had one hidden layer, 

and the sixth based learner (LG 1) had two hidden layers, followed by one Dense out­

put layer. For all the base learners, the number of hidden layer units was determined 

based on the integer value obtained from ( seq len + 2)/2, where seq_ len was the 

length of the feature set (i.e., vector length of the time-series data). Constant 2 was 

used because the number of classification outputs was two (rumor and non-rumor). 

The researcher considered this approach following one of the rule-of-thumb methods, 
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which states that the number of hidden layer neurons should be between the input 

layer·s size and the s ize of the output layer [70). Rand Uniform kernel initiali,er \\US 

used for all the hidden layers with values (-0.5, 0.5). sigmoid activation was appltt.-d 

only to the RNN model 's hidden layer, and the Flatten layer was applied only to 

BiGRU and BiLSTM models to flatten the data before the final output Dense layer 

that was activated using softmax function. Adam optimizer was used with a leam­

ingrateofl .00E-05 along with a categorical cross-entropy loss function. The batch 

input size was set to 32, and the nwnber of epochs was 300. The Dropout technique 

was not used with these models since their architectures were simple. and using 11 

may have caused under-fitting issues. The variants of the proposed model follo\\cd 

the same neural network design except for the hyperparameter that are tuned. for 

example, the batch input size and learning rate. 

T ABLE 6.1 Configurations of NN models 

NN model # of hidden layers Hidden layer units Dropout 

RNNJ 

GRU_l ( seq. [en+ 2)/2 A 

LSTMJ 

RNN..2 

GRU--2 3 16,32,64 

LSTM1 
0 25 

RNN3 

GRU3 2 64,32 -
LSTM3 -
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6.3.3 Implementation-II. Six base learners (RNN. l, RNN.2, RNN3,GRU_l, 

GRU2, and GRU 3) were used in th.is implementation. To create new ensembles 

with new base learners, RNN, LSTM, and GRU layers were used. For instance, for 

base learners designed using the RNN layer, the researcher reused the RNN 1 base 

learner designed for implementation-I and new base learners were created by adding 

extra hidden layers with increasing (RNN 2) and decreasing (RNN 3) number of hid­

den layer units. The configurations of the base learners are shown in Table 6.1. All 

these base learners had the final output dense layer with softmax activation and loss 

function as categorical cross-entropy. Rand Uniform kernel initializer was applied 

with values (-0.5, 0.5). The number of training epochs was set to 300. For RNN -1, 

GRU_l, and LSTM J base learners in Table 6. l, seq_len was the feature set's length. 

6.3.4 Implementation-ill. Similar to implementation-II, six base learn­

ers (RNN_l , RNN...2, RNN-3, LSTM_l, LSTM-2, and LSTM3) were employed in 

implementation-III. The hyperparameters were set similarly. 

6.4 Dataset 

The PHEME dataset, time-series data generation, and data pre-processing on 

the time-series data are discussed next. 

6.4.1 PHEME Dataset. In this study, the researcher used the PHEME 

[71) dataset of rumors and non-rumors, consisting of Twitter conversations for nine 

different newswo1thy events. The distribution of the dataset is shown in Table 6.2. 

The basic structure of conversation samples is shown in Figure 6.2. Each conversation 

sample has a source-tweet and a set of reactions along time, where reactions express 

their opinions towards the claim contained in the source-tweet. 

As shown in Table 6.2, this dataset exhibits severe event-wise and class-wise 
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TABLE 6.2 The PHEME dataset with nine events 

Event Rumors Non-rumors Total 

Charlie Hebdo 458 1,621 2,079 

Ferguson 284 859 l ,143 

German wings-crash 238 231 469 

Ottawa shooting 470 420 890 

Sydney siege 522 699 1,221 

Gurlitt 61 77 138 

Putin missing 126 112 238 

Prince Toronto 229 4 233 

Ebola Essien 14 0 14 

Total 2,402 4,023 6,425 

unbalanced nature. For example, event Charlie Hebda was dominant over all other 

events present in the dataset in terms of the number of samples causing event-wise 

unbalance. In general, the number of non-rumor class samples was way more than 

the number of rumor class samples, which was class-wise unbalance in the dataset. 

The experimental analysis excluded events Prince Toronto and Ebola Essien as 

they had extremely unbalanced proportions of rumors and non-rumors and trimmed 

down the dataset to seven events. For example, the Ebola Essien event had zero 

number of non-rumor class samples. The basic statistics of the PHEME dataset 

with seven events are shown in Table 6.3. Overall, the PHEME seven events dataset 

had 6, 178 data samples, in which non-rumor class samples were almost double the 

number of rumor class samples. 

6.4.2 Generation of Time-series Data. The researcher explored the tem­

poral features of Twitter data for the timely detection of rumors in social media. 



FIGURE 6.2 Structure of a Twitter conversation sample 
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Specifically, time-series data were generated by transforming Twitter conversations, 

where each conversation contains a list of tweets, into time-series vectors that contain 

reaction counts as features, and fed as input to deep learning models. Each of the 

Twitter conversation samples present in the PHEME seven events dataset were trans­

formed into a time-series vector for each time interval T , where T = {2, S, 10, 30, 60} 

minutes. After the successful transformation of all conversations into time-series 

data, each vector represented one whole conversation. Each of its values was the 

total reaction counts with respect to T. 

Denote E = { ei} the set that contains data of seven events present in the dataset, 

then, for each event data e;, CiJ is a conversation sample related to that event. As 
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TABLE 6.3 Distribution of the PHEME dataset with seven events 

Event Rumors Non-rumors Total 

Charlie Hebdo 458 (22.03%) l ,621 (77.97%) 2,079 

Ferguson 284 (24.85%) 859 (75.15%) 1,143 

Germanwings Crash 238 (50.75%) 231 (49.25%) 469 

Gurlitt 61 (44.20%) 77 (55.80%) 138 

Ottawa Shooting 470 (52.81 %) 420 (47.19%) 890 

Putin missing 126 (52.94%) 112 (47.06%) 238 

Sydney Siege 522 (42.75%) 699 (57.25%) 1,221 

Total 2, 159 (34.95%) 4,019 (65.05%) 6,178 

the dataset had conversations separated by event, the researcher iterated over all the 

events one by one. For every conversation sample present in each iteration, the re­

searcher extracted timestamps of its source-tweet timeSource (starting point of the 

conversation) and its timeReactions = { tri, tn., · · · , trn}, which is a set of times­

tamps of all the reactions co1Tesponding to that source-tweet. For a conversation 

sample, its length N ( c) is determined by, 

N( c) = max(timeReactions) - timeSource 
7 

(6.6) 

Assume c represents a conversation sample, if ( a, b] is the time interval limit for the 

k-th interval, where k= 1, 2, · · · , N(c) then the total reactions count for that time 

interval is given by, 

countk = card( Q) (6.7) 

where QC timeReactions and Q = { x I x > a I\ x .$ b~ xis the timestamp 

of a reaction (tweet) and cardinality is the measure of the size of set Q, and the 
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transformed vector representation is as follows: 

V ( c) = [ countk countk+ 1 · · · countN] (6.8) 

The final vector representation of all conversation samples for each event is given by, 

~ = 

□ V(Qb 

0 V(Cl)o 

D D 
C C 

V(cn) 

(6.9) 

The flow chart of transforming Twitter conversations into time-series vectors for all 

combinations of E and Tis given in Figure 6.3. 

6.4.3 Data Pre-processing. The second step in the data preparation pro­

cess was to reduce the data sparsity of the time-series data since the vector length 

of aU data samples were decided by the longest conversational sample with respect 

to T. To tackle this problem, the researcher applied skleam's dimensionality reduc­

tion method called TruncatedSVD [72]. The time-series data were normalized using 

sklearn's MinMaxScaler [72] and removed duplicate data samples with the same fea­

tures with different ground truth values. 

Finally, The researcher calculated class weights by using sklearn' s class _weight 

[72] library with a balanced scheme since the PHEME dataset exhibited an unbalance 

class nature. Class weights were used in weighting loss functions during the training 

process, which means the higher weight was given to minority class and lower weight 



FIGURE 6.3 The flow chart for transforming Twitter conversations into time­
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to the majority class. The class weights were computed using the equation below 6.10. 

class weights= . ) ( n.dasses X bmcount(y) 

n.samples (6.10) 

where y represents the actual class labels per sample, n classes is the count of unique 
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class label values existing in the dataset, n .Bamples is the number of data samples, 

and bincount(y) counts the number of occurrences of each value in y of non-negative 

integers. 

6.5 Experimental Analysis 

In this section, the evaluation metrics of the proposed model are discussed, and 

experimental results are shown. 

6.5.1 Evaluation Metrics. The Fl-score, which is the weighted average of 

Precision and Recall scores, was used as the ensemble model's evaluation metric. The 

researcher considered the F 1-score metric with micro and macro averaging schemes 

for evaluating the performances of the ensemble classification models. In general, 

the Fl-score is calculated by using equation (6.11). 

F 1 = 2 precision x recall 
x precision+ recall 

(6.11) 

where precision and recall scores tell the strength of a classifier. 

In the macro averaging scheme, Fl-score is calculated using equation (6.13). 

Macro Fl-score uses precision and recall scores for each class label and finds their 

unweighted mean. In a micro averaging scheme, FI-score is determined using equa­

tion (6.15), and micro FI-score uses global metrics, which means precision and recall 

scores are calculated by counting all the true positives (TP ), false positives (FP ), 

and false negatives (FN) across all classes. 

Pmacro= 

Rmacro = 

n 
i=l.Pi 

,(1-
i=l ri 

n 

(6.12) 
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Fl = 2 X Pmacro X Rmacro 
macro Pmacro + Rmacro 

(6.13) 

n TH 
i=l I 

Pmicro = --=l~-1--;1""''R,..'i ·+---,,F""''R~i 

?=i TPi 
Rmicro = --11---''---"----.1\-T 

i=l TPi + F 1vi 

(6.14) 

P, · X R · Fl . = 2 X micro micro 
micro P micro + R micro 

(6.15) 

In the above equations, P and R represent precision and recall values for a given 

averaging scheme (macro or micro), i represents a class label, pi, and 77 are the 

precision and recall scores for the ith class label. TH, FA, and FN; are the true 

positives, false positives, and false negatives for the ith class label. n is the total 

number of classes. 

6.5.2 Experimental Results. In Table 6.4, the current chapter' s best micro­

averaged scores of Precision, Recall, and F l were compared with the previous chap­

ters' best micro-averaged results. The researcher improved the rumor classification 

perfonnance by a decent margin with the proposed ensemble-based deep learning 

model in terms of micro-Fl. The improvements were 12.5% and 7.9% for Kotteti 

et al., 2018 and Kotteti et al., 2019, respectively. The rest of this section discusses 

hyperparameters' influence, such as batch input size and learning rate on the classi­

fication model 's performance. 

6 .5 .2.1 Fixed Batch Input Size. The testing results when the batch 

input size is fixed are shown in Tables 6.5 and 6.6 . These testing results were the 

mean micro and macro averaged F l scores of all events obtained using leave-one­

event-out cross-validation across T by varying learning rates for Tables 6 .5 and 6.6, 

respectively. 

In Table6.5, for T = 2 and 5 min, the micro-F l scores of the ensemble I-1 
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TABLE 6.4 Comparison of current study to Kotteti's previous studies 

Previous studies 
lV1Cll ll: Kotteti et al., 20 18 Kotteti et al., 2019 \....,UllC::lll :stuuy 

Micro-Precision 0.949 0.564 0.643 

Micro-Recall 0.374 0.564 0.643 

Micro-Fl 0.518 0.564 0.643 

are better than that of the ensembles 1-2 and 1-3 across the chosen learning rates. 

This may be because it had more ensemble diversity than other ensembles (i.e., the 

presence ofbase learners designed using Bi-directional RNNs and a model with hybrid 

architecture that contains a pair of LSTM and GRU layers). In these time intervals, 

the best scores for the ensemble I-1 were obtained for learning rate l .50E - 05. 

However, when T = 5 min, the ensemble 1-3 performed poorly across all the chosen 

learning rates and T. 

When T = 10 min, the ensemble 1-1 outperformed ensembles I-2 and 1-3 for 

learning rates l.00E-05 and l.S0E-05. In the case oflearning rate 5.00E-06, the 

ensemble I-3 surpassed other ensembles. From this interval onward, the ensemble l-3 

started to improve its performance for higher time intervals, w.r.t the chosen learning 

rates. In this case, the higher the time interval, the better the performance for the 

ensemble 1-3. It is this time interval, where ensembles I-1 and 1-2 performed weakly 

across T. 

For T = 30 min, the ensemble 1-3 achieved maximum micro-Fl score for learning 

rates 5.00E-06 and l .S0E-05. The ensemble 1-1 obtained maximum micro-FI score 

for learning rate 1.00E-05. However, the micro-Fl scores of the ensemble I-2 across 

the learning rates were very low compared to the other ensemble implementations in 
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TABLE 6.5 Shows the mean micro averaged F 1 testing results of all events that 
were obtained using leave-one-event-out cross-validation across Tby varying learn­
ing rate 

Micro-Fl 
• u1u: uau:rvaa I L~an1111g 1.·utu: j l-l 1-2 1-3 

5.00E-06 I 0.53986 I 0.52801 I 0.52835 

2 min l.00E-05 I 0.55231 I 0.53131 I 0.53537 

l .50E-05 I 0.56656 I 0.53399 I 0.50439 

5.00E-06 I 0.43673 I 0.43128 I 0.3936 

5 min l.00E-05 I 0.43809 I 0.4 I 99 I 0.39489 

1.50E-05 I 0.44764 I 0.41844 I 0.40408 

5.00E-06 I 0.43347 I 0.455 15 I 0.46869 

10 min l .00E-05 I 0.43594 I 0.4086 I 0.41396 

1.50E-05 I 0.42631 I 0.40358 I 0.41814 

5.00E-06 I 0.55092 I 0.43766 I 0.5524 

30 min l .00E-05 I 0.54492 I 0.42296 I 0.53995 

l .50E-05 I 0.53428 I 0.45717 I 0.5394 

5.00E-06 I 0.55717 I 0.58966 I 0.6116 

60 min l.00E-05 I 0.61769 I 0.56448 I 0.62146 

l.50E-05 I 0.619 I 0.55943 I 0.59565 
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TABLE 6.6 Shows the mean macro averaged Fl testing results of all events that 
were obtained using leave-one-event-out cross-validation across T by varying learn­
ing rate 

Macro-F l 
• llllt:: Ullt::CViU Lt::arnaug n.al.t:: 1-1 1-2 1-3 

2 min 

5 min 

10 min 

30 min 

60 min 

5.00E-06 

1.00E-05 

l.50E-05 

1 o.44878 I o.38891 I o.311 19 

1 o.46329 1 o.39504 I o.38406 

1 o.49849 1 o.38397 I o.39 l 08 

5.00E-06 I 0.4 l 544 I 0.35804 I 0.29844 

l.00E-05 I 0.42368 I 0.35859 I 0.3125 

l.50E-05 I 0.42362 I 0.371 I 0.34597 

5.00E-06 \ 0.34527 \ 0.33345 I 0.33153 

l.00E-05 I 0.35471 I 0.31419 I 0.31294 

l.50E-05 I 0.34021 I 0.32128 I 0.32075 

5.00E-06 I 0.37669 I 0.32084 I 0.34954 

l.00E-05 I 0.38528 I 0.31908 I 0.36389 

1.50E-05 I 0.38588 I 0.31528 I 0.38077 

5.00E-06 I 0.42367 I 0.39506 I 0.45095 

I .00E-05 I 0.48757 I 0.39201 I 0.45083 

l.50E-05 I 0.48163 I 0.38864 I 0.43825 
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this time interval. 

For T = 60 min, the ensemble 1-3 outperformed other ensembles in terms of 

the maximum micro-Fl score for learning rates S.OOE - 06 and l .OOE - OS. It 

was this time interval where all ensembles obtained their maximum micro-Fl scores 

across T for all chosen time intervals. The ensemble 1-3 achieved the overall best 

micro-F 1 score of 62.1 % for the learning rate of l .OOE - 05. In this time interval, 

ensembles 1-1 and 1-3 were better than that of the ensemble I-2. The more diversity 

of ensemble I-1 and the ensemble I-3 with its base learners having LSTM layers that 

have better representational power than GRU layers outplayed ensemble 1-2 (base 

learners without LSTM layers). Nonetheless, ensemble 1-1 and I-3 results are similar 

to each other. 

From Table 6.6, for T= 2, 5, IO and 30 min, the macro-Fl scores of the ensemble 

1-1 were better than that of the ensembles 1-2 and I-3 across the chosen learning rates. 

And again, this may be due to the presence of more diversified base learners in the 

ensemble 1-1 that helped to surpass other ensembles. The ensemble I-1 achieved top 

performance for learning rate 1.SOE-05 when T = 2 min, for learning rate l .OOE-05 

when T= 5 and 10 min, and forlearningrate I.SOE-OS when T = 30 min. However, 

when T = IO and 3 0 min, the performance of the ensemble I-1 dropped down across 

the learning rates compared to T = 2 and 5 min. Since for higher time intervals, the 

lengths of time-series data sequences became shorter, thus maybe overlooking small 

propagation patterns present in the time-series data. The time interval T = IO min 

contributed to the overall poor performance of the ensemble I-1. The ensembles l-2 

and I-3 performed poorly when T = 30 and S min, respectively. 

For T = 60 min, the ensemble I-I outperformed others in terms of the best 

macro-Fl score for learning rates 1.00E - OS and I .SOE - 05. When the learning 

rate was S.OOE - 06, the ensemble 1-3 surpassed other ensembles. Moreover, in this 
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time interval, for ensembles 1-1 and I-2, the results were almost on par with the 

results that they achieved when T = 2 m in. In this time interval, the ensemble 1-3 

achieved its overall best performance across T. The overall best macro-Fl score was 

obtained by the ensemble I-1 when T = 2 min and a learning rate of l .SOE - 05. 

Furthermore, ensembles 1-1, 1-2, and I-3 performed better in terms of both micro­

F l and macro-F 1 scores when T = 60 min over other time intervals with respect to 

the chosen learning rates. The only exceptional case was that the ensemble 1-1 

performed well in terms of the macro-Fl score when T = 2 min over other time 

intervals with respect to the chosen learning rates. In general, both the results 

showed the fact that the performances of ensembles are better when Tis either too 

low (i.e., 2 min) or too high (i.e., 60 min). This presents us a chance to select a time 

interval based on the requirement. For example, if early detection is important, pick 

a lower time interval value; and in the case of effective prediction as a concern, than 

select a higher time interval value. 

In addition to this, the IO min time interval caused most of the ensemble im­

plementations, particularly the ensemble 1-1, to achieve low performance for both 

micro and macro averaging schemes. This may be due to the propagation patterns 

extracted based on this time interval value do not have necessary variations such that 

classification models can take advantage of them. On the other hand, the ensemble 1-

3 was clearly unhappy with 5 min time interval for both averaging schemes as a 

lower time interval value was subjected to have high data sparsity, which may be the 

cause for LSTM based ensemble 1-3 to perform weakly in this time interval. 

6 .5.2.2 Fixed Learning Rate. In the case of a fixed learning rate, 

the testing results are shown in Tables 6.7 and 6.8. These testing results were the 

mean micro and macro averaged F 1 scores of all events that were obtained using 



TABLE 6.7 Shows the mean micro averaged Fl testing results of all events that 
were obtained using leave-one-event-out cross-validation across T by the varying 
batch input size 

Micro-Fl 
.111111:: uu1::rva1 nau;u UIJJUl ~lLt: 1-1 1-2 1-3 

16 I o.510131 o.48588 I o.50378 

2 min 32 I o.55231 I o.53131 I o.53537 

64 I o.540891 o.51473 I 0.52323 

16 I o.48062 I o.4534 I 0.42757 

5 min 32 I o.438091 0.4199 I o.39489 

64 I 0.44371 I o.464731 0.41045 

16 I 0.440061 0.433321 o.48341 

10 min 32 I o.435941 o.4086 I o.41396 

64 I o.43322 I o.422061 0.42 

16 I o.51484 I o.4s42 I o.50053 

30 min 32 I o.54492 I 0.42296 I o.53995 

64 I o.55006 I 0.451091 o.54926 

16 I o.5789 I o.5619 I o.46469 

60min 32 I o.61769 I o.56448 I o.62146 

64 I o.57902 I o.58511 I o.64331 
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TABLE 6.8 Shows the mean macro averaged Fl testing results of all events that 
were obtained using leave-one-event-out cross-validation across Tby vruying the 
batch input size 

.l llllt: U1lt:rva1 D.tlCU .llll'U l ~I.Lt: 

16 

2 min 32 

64 

16 

5 min 32 

64 

16 

IO min 32 

64 

16 

30 min 32 

64 

16 

60 min 32 

64 

Macro-Fl 
1-1 1-2 1-3 

1 o.44335 I o.39693 I o.38611 

1 o.46329 I o.39504 1 o.38406 

1 o.43664 I o.3692 I o.36674 

1 o.4367 1 0.31214 1 o.35665 

1 o.42368 I o.35859 1 o.3 125 

I o.38113 I o.32 1 0.32925 

1 o.34352 1 o.32805 I o.35568 

I o.35411 I 0.3 1419 1 o.31294 

I o.350041 o.31881 I o.32688 

I o.37424 I o.30853 1 o.3749 

I o.38528 I o.31908 1 o.36389 

1 o.382051 o.301221 o.34899 

1 o.4266 1 o.31102 1 o.3486 

1 o.48757 I o.39201 1 o.45083 

I o.39252 I o.38015 I o.41661 
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leave-one-event-out cross-validation across Tby varying batch input size for Tables 

6.7 and 6.8, respectively. 

From Table 6.7, for T = 2 and 30 min, the micro-Fl scores of ensembles 1-1 and 

[-3 were very similar and better than that of the ensemble 1-2. This may be due to 

the presence of LSTM layers in both ensembles I- I and 1-3. l n ensemble I-2, there 

was no base learner with an LSTM layer. In these intervals, with respect to the 

chosen batch input sizes, the ensemble I-1 achieved the best performance. 

When T = 5 min, the ensemble 1-1 outperformed other ensembles for batch input 

sizes 16 and 32. In this time interval, the ensemble 1-2 performed better than that 

of other ensembles for batch size 64. This time interval is where the ensemble 1-3 

achieved its least micro-Fl scores across all the batch input sizes and T, which is 

the same when the batch input size is fixed under a micro-averaging scheme. For 

T = 10 min, the ensemble 1-1 obtained the best micro-Fl scores for batch input sizes 

32 and 64. The ensemble 1-3 achieved a better micro-Fl score over other ensembles 

for batch input size 16. In this time interval, the ensembles I-1 and 1-2 obtained their 

least micro-F 1 scores across all the batch input sizes and T. 

When T = 60 min, the ensemble I-3 outperfonned other ensembles for batch 

input sizes 32 and 64, and the ensemble 1-1 performed better for batch input size of 

16. It was this time interval where all ensembles obtained their maximum micro-Fl 

scores. The ensemble 1-3 achieved the overall best micro-FI score of 64.3% for batch 

input size of 64. In this case, higher time interval helped the ensembles to surpass 

their lower time interval micro-Fl scores for almost all of the combinations of batch 

input size and T. Again, the results show that LSTM backed ensemble 1-3 outplayed 

other ensembles given the advantages of LSTM such as its good gating mechanism 

and ability to learn long-term dependencies. 

From Table 6.8, for T= 2 min, the ensemble I-1 achieved better macro-Fl scores 
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than that of ensembles 1-2 and 1-3 across all the batch input sizes. In this time 

interval, the ensemble 1-2 obtained its maximum macro-Fl score. When T = 5 min, 

the ensemble 1- 1 outperformed other ensembles in terms of the macro-F 1 score. Lower 

time intervals had longer time-series sequences that can better represent variations in 

propagation patterns of rumors and non-rumors than for higher time interval values. 

However, lower time intervals may have more data sparsity. 

For T = 10 and 30 min, the ensemble 1-l achieved better performance than 

that of other ensembles for batch input sizes 32 and 64. However, its performance 

significantly dropped compared to lower time interval values, and the ensemble 1-3 

obtained better performance for batch input size 16. The ensemble 1-2 became weak 

when T = 30 min, and ensembles [-1 and 1-3 started to show some improvement in 

their performances compared to T = 1 0 min. 

In the time interval T = 60, the ensemble 1-1 better performed over other ensem­

bles for batch input sizes 16 and 32, and the ensemble [-3 obtained the best macro-Fl 

score for batch input size 64. In this time interval, the ensembles 1-1 and 1-3 obtained 

their overall maximum macro-Fl scores (i.e., 48.7% and 47.6% respectively) across 

T. Overall, the ensembles supported extreme time intervals such as T = 2 min and 

T = 60 min to achieve good performance. 

In the case of the micro-Fl score, the ensembles 1-1, 1-2, and 1-3 obtained their 

best micro-Fl scores for T = 60 min with respect to the chosen batch input sizes. 

The only exception was where the micro-F I score of the ensemble 1-3 was lower than· 

its micro-FI scores when T = 2, l O and 30 min when batch input size was set to 16. 

This means that T = 60 min was appropriate for the effective detection of rumors. In 

the case of the macro-Fl score, the best performances of the ensembles l-1 I-2 and , ' 

1-3 were varied for each batch input size across T , which means based on the need, 

a suitable ensemble model can be selected along with its appropriate time interval 
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value. For instance, if early detection is required, a researcher can pick a lower time 

interval value; and for effective prediction, the researcher can choose a higher time 

interval value. 

As discussed earlier, the same behavior for 10 min time interval value was seen, 

which caused most of the ensemble implementations to perform weakly for both 

micro and macro averaging schemes. In addition to that, the ensemble I-3 again 

showed low performance in the 5 min time interval under both averaging schemes. 

By observing the above results, varying the hyperparameters batch input size and 

learning rate resulted in producing similar kinds of behavior of the ensembles. In 

general, when micro-averaging was used, both hyperparameter variations supported 

higher time interval value for better performance. In the case of macro-averaging 

scheme was employed, time intervals 2 and 60 min helped ensembles 1-1 and 1-2 to 

perform strong. However, the ensemble I-3 still achieved better performance when 

T = 60 min case only as all ensembles were comfortable with the 60 min time 

interval. It was best used to achieve better performance regardless of variations in 

chosen batch input sizes and learning rates. For T = 60, the generated time-series 

data will have lesser data sparsity than that of other values of T that makes the 

feature space short for the conversation samples. This may be the reason that all 

ensembles performed better at higher time intervals. Especially, the ensembles with 

base learners designed using LSTM layers. 

Another key observation was that, for all ensembles, 2 and 60 min time intervals 

have shown good performance. However, there is no sweet spot for the ensembles 

for other values of T . This observation was critical in applying the proposed model 

depending upon the end goal. For instance, if early detection is needed, the researcher 

can pick small time interval values such as T = 2 min by sacrificing a little amount 

of prediction performance. If the effective prediction is important, the researcher can 
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easily set the time interval to a higher value, for example, T = 60 min. 

6.5.3 Discussions. As the PHEME dataset exhibits non-rumor chauvinism 

(i.e., the dataset contains non-rumor samples almost double the number of rumor 

samples), adding more rumor samples to the dataset will help in improving its class 

balance. It may help classification models to perform better classification. When 

compared to [73], it was noticed that increase in maximum micro and macro averaged 

Fl scores with the addition of two extra events (Gurlitt and Putin Missing events) 

to the PHEME five event dataset. In the case of fixed batch input size, improvement 

was 5.7% and 0.4% for micro and macro averaging schemes. When the learning rate 

was constant, the improvement was 7 .9% for the micro averaging scheme. However, 

the maximum macro F 1 score was dropped by 0.7%. Moreover, even though events 

Gurlitt and Putin Missing were included in the seven events PHEME dataset, only 

the Putin Missing event contributed to adding a greater number of rumor samples 

slightly to the dataset than Gurlitt event, which was also a supporter of the non­

rumor group. 

In addition to this, the data pre-processing method combined with the proposed 

model helped in improving Kotteti's previous best score in [73] and achieved a 64.3% 

micro FI score, which is almost an 8% improvement. The performance improvement 

may seem small, but it is non-trivial to gain huge performances using this dataset. 

For instance, in (74], extensive feature engineering was conducted for a rumor de­

tection problem on social media using the PHEME dataset with five events. The 

authors focused on extracting complex features such as content-based and social fea­

tures, and their best Fl scores were 0.606 and 0.339 for content-based and social 

features, respectively. When both feature sets are jointly used, the F 1 score reached 

0.607, which was a 0.1 % improvement. Again, extensive feature engineering needs 
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a long time to be completed as some of the features may not be readily available. 

Having complex feature sets challenge hardware resources, which also increases com­

putational complexity that directly impacts training times of classification models. 

Nevertheless, given the condition that information spreads rapidly on social media, 

time-taking labor-intensive feature engineering may not be appropriate. 

6.6 Concluding Remarks for the Chapter 

In this chapter, a data pre-processing method and an ensemble model were pro­

posed for the timely detection of rumors on social media. The proposed data pre­

processing method transformed Twitter conversations into time-series vectors based 

on the tweet creation timestamps, which can be extracted and processed without 

delay. Furthermore, the generated time-series data was of pure numeric type, which 

reduced feature set complexity and, in turn, helped in reducing the computational 

complexity of classification models during their training process. The proposed en­

semble model contained several classification models with simplistic yet effective 

architectures designed using deep learning techniques. By combining the proposed 

data pre-processing method with the ensemble model, better performance of rumor 

detection was demonstrated in the experiments using the PHEME dataset. For in­

stance, the researcher improved the classification performance by 7 .9% in terms of 

micro Fl score compared to the baselines. 
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CHAPTER 7 

CO NCLUSIONS AND FU TURE WORK 

7 .1 Conclusions 

In this study, a data imputation preprocessing method was proposed for enhanc­

ing fake news detection using machine learning. The proposed method aimed to 

mitigate the missing values problem in the raw data using data imputation methods. 

The researcher utilized scikit-leam's lmputer with a " mean" strategy for missing nu­

merical values [26], and the Categoricallmputer1 method was applied to categorical 

missing data. Experimental results showed that traditional machine learning models 

combined with the proposed data preprocessing method outperformed baselines. 

Given the condition that infonnation spreads rapidly in social media, verifying 

news credibility becomes a challenging task. Fake news detection in social media is 

a well-known problem; many of the existing works explored various features from 

social media posts to improve fake news detection accuracy. Fake news in social 

media disseminates very fast. This created a necessity for developing novel method­

s/techniques to detect fake news in its early stages of proliferation. In this study, 

a multiple time-series data analysis model was also proposed. It relied only on the 

temporal characteristics of social media (Twitter) data for the early detection of fake 

news in social media. 

With the proposed time-series model, the researcher simplified the feature extrac­

tion process, which significantly reduced the time required for ML models' training 

and testing processes as well as reduced the computational complexity of ML mod­

els by taking advantage of pure numerical time-series data. The experimental re-



100 

suits showed that the generated time-series data used with the GaussianNB classifier 

achieved a high Precision score of 94%. 

Furthermore, deep learning techniques combined with time-series data generated 

by using only the temporal features of tweets showed better performance results than 

traditional machine learning models. The ensemble-based deep learning rumor 

detection model achieved top perf01mance, especially. 

In summary, the main contributions of this study are: 

_ A data imputation preprocessing method was proposed for mitigating missing 

values in the raw data and used with traditional ML models improved fake 

news detection accuracy and outperformed state-of-the-art methods [27]. 

_ A multiple time-series data analysis model for the early detection of fake news 

in social media was proposed. 

- The experimental results showed that using the generated time-series dat~ 

simplified the feature extraction process, reduced ML models' computational 

complexity and their training and testing times, and achieved a high Precision 

score of 94% with GaussianNB classifier. 

- The researcher proposed a deep learning-based classification model that relied 

entirely on tweets' propagation patterns for the detection of false information 

in social media. 

- Experimental results showed improvement in the micro-averaged Fl score by 

4.6%, compared to baselines [28]. 

- The researcher proposed an ensemble-based deep learning classification model 

for rumor detection on social media. With that, the classification performance 

was improved by 7 .9% in terms of a micro F l score compared to the baselines. 
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7 .2 Future Work 

This study addressed issues related to handling missing data to enhance fake news 

detection and early detection of false information on social media. These results can 

be enhanced by employing good quality dataset(s) than that of the datasets used in 

this study. However, a dataset with good quality in terms of size and ground-truth 

balance was not currently available. It would be beneficial to collect a high-quality 

dataset for fake news detection in the future. 
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