Identifying student misconceptions in introductory materials engineering classes

Document Type

Conference Proceeding

Publication Title

ASEE Annual Conference Proceedings


Numerous student misconceptions in an introductory materials engineering class have been identified in order to create a Materials Concept Inventory (MCI) to test for the level of conceptual knowledge of the subject matter before and after the course. The misconceptions have been utilized as question responses, or "distracters", in the multiple-choice MCI test. They have been generated from a literature survey of assessment research in science and engineering in conjunction with extensive student interactions. Student input consisted of: weekly short-answer, open-ended questions; multiple-choice quizzes; and weekly interviews and discussions. In a simplified way, the questions tied fundamental concepts in primary topical areas of atomic structure and bonding, band structure, crystal geometry, defects, microstructure, and phase diagrams to the properties of materials in the families of metals, polymers, ceramics, and semiconductors. An early version of the MCI test was given to students in introductory materials courses at Arizona State University (ASU) and Texas A&M University (TAMU). Results showed conceptual knowledge gains between 15% and 37% between course pre-test and post-test scores. Lower scores, specified as less than 30% gain by Force Concept Inventory work, are typical of traditionally delivered, lecture-base instruction. Scores from 30% to 60% are moderate gains and are often evidenced in courses using active learning methods. Early results of the MCI showed differences between ASU and TAMU on some questions. It appears that they may be due to curricular and course content differences at the two schools.

First Page


Last Page


Publication Date


This document is currently not available here.