•  
  •  
 

Abstract

Thermal instability in a horizontal layer of Walter’s (Model B') visco-elastic nanofluid is investigated for more realistic boundary conditions. The flux of volume fraction of nanoparticles is taken to be zero on the isothermal boundaries. The model used for nanofluid incorporates the effect of Brownian diffusion and thermophoresis. Perturbation method, normal mode technique and Galerkin method are used in the solution of the eigenvalue problem. Oscillatory convection has been ruled out for the problem under consideration. The influences of the Lewis number, modified diffusivity ratio and nanoparticle Rayleigh number on the stationary convection are shown both analytically and graphically.

Share

COinS